Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:34:54.039Z Has data issue: false hasContentIssue false

Evidence of Magnetoelectric Coupling in Pb(Fe0.5Nb0.5)O3 Ceramics Through Impedance Spectroscopy and Electromechanical Resonance Measurements

Published online by Cambridge University Press:  31 January 2011

Oscar Raymond
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Ensenada, BAJA CALIFORNIA, Mexico
Reinaldo Font
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica-IMRE, La Habana, La Habana, Cuba
Nelson S. Almodovar
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica-IMRE, La Habana, La Habana, Cuba
Jorge J. Portelles
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica-IMRE, La Habana, La Habana, Cuba
Jesús M Siqueiros
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km. 107 Carretera Tijuana-Ensenada, Ensenada, BAJA CALIFORNIA, 22860, Mexico, 52 (646) 1744602, 52 (646) 1744603
Get access

Abstract

Multifunctional materials such as the single phase compound Pb(Fe0.5Nb0.5)O3 (PFN), where ferroelectric and antiferromagnetic order coexist, are very promising and have great interest from the academic and technological points of view. In this work, coupling of the ferroelectric and magnetic ordering has been observed. For this study, a combination of the small signal response using the impedance spectroscopy technique and the electromechanical resonance method with the large signal response through standard ferroelectric measurement, has been used with and without an applied magnetic field. The measurements to determine the electrical properties of the ceramic were performed as functions of the bias and poling electric fields. A simultaneous analysis of the complex dielectric constant , impedance , electric modulus , and the electromechanical coupling factors is presented. The results are correlated with a previous study of structural, morphological, small signal dielectric frequency-temperature response, and the ferroelectric hysteretic, magnetic and magnetodielectric behaviors. The observed shifts of the resonance and antiresonance frequency values can be associated with change of the domain size favored by the readjustment of the oxygen octahedron when the magnetic field is applied.From P-E hysteresis loops obtained without and with an external applied magnetic field a maximum value of dc magnetoelectric coefficient αME = 4 kV/cm T (400 mV/cm Oe) was obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramesh, R. and Spaldin, N. A. Nature Materials 6, 22 (2007).Google Scholar
2 Scott, J. F. Nature Materials 6, 256 (2007).Google Scholar
3 Gajek, M. Bibes, M. Fusil, S. K Bouzehouane, K, Fontcuberta, J. Barthelemy, A. Fert, A. Nature Materials 6, 296 (2007).Google Scholar
4 Eerenstein, W. Wiora, M. Prieto, J. L. Scott, J. F. and Mathur, N. D. Nature Materials 6, 348 (2007).Google Scholar
5 Chu, Y. H. Martin, L. W. Holcomb, M. B. Ramesh, R. Materials Today 10, 16 (2007).Google Scholar
6 Raymond, O. Font, R. Suárez-Almodovar, N., Portelles, J. Siqueiros, J. M. J. Appl. Phys. 97, 084107 (2005).Google Scholar
7 Raymond, O. Font, R. Suárez-Almodovar, N., Portelles, J. Siqueiros, J. M. J. Appl. Phys. 97, 084108 (2005).Google Scholar
8 Raymond, O. Font, R. Suárez-Almodovar, N., Portelles, J. Siqueiros, J. M. J. Appl. Phys. 99, 124101 (2006).Google Scholar
9 Montero-Cabrera, M. E. Fuentes-Montero, L., Calzada, L. Rosa, M. Pérez De la, Raymond, O. Font, R. García, M., Mehta, A. Fuentes, L.., Integrated Ferroelectric 101, 101 (2008).Google Scholar
10 Font, R. Alvarez, G. Raymond, O. Portelles, J. Siqueiros, J. M. Appl. Phys. Letters 93, 172902 (2008).Google Scholar
11 Prellier, W., Singh, M. P. Murugavel, P. J. Phys.: Condens. Matter 17, R803–R832 (2005).Google Scholar