Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:06:51.606Z Has data issue: false hasContentIssue false

Evaluation of the Stability of Raft Structure in Nickel Base Superalloys Throughout their Lifetime

Published online by Cambridge University Press:  26 February 2011

Katsushi Tanaka
Affiliation:
[email protected], Kyoto University, Materials Science and Engineering, Yoshidahon-machi,, Sakyo-ku,, Kyoto, 606-8501, Japan, 81-75-753-5461, 81-75-753-5461
Toru Inoue
Affiliation:
[email protected], Kyoto University, Materials Science and Engineering, Yoshidahon-machi,, Sakyo-ku, Kyoto, 606-8501, Japan
Tetsu Ichitsubo
Affiliation:
[email protected], Kyoto University, Materials Science and Engineering, Yoshidahon-machi,, Sakyo-ku,, Kyoto, 606-8501, Japan
Kyosuke Kishida
Affiliation:
[email protected], Kyoto University, Materials Science and Engineering, Yoshidahon-machi,, Sakyo-ku,, Kyoto, 606-8501, Japan
Haruyuki Inui
Affiliation:
[email protected], Kyoto University, Materials Science and Engineering, Yoshidahon-machi,, Sakyo-ku,, Kyoto, 606-8501, Japan
Get access

Abstract

Stability of raft structure in nickel base superalloys has been examined by using elastic energy calculations based on a microelasticity theory. The numerical calculation method for a structurally heterogeneous system is applied. The results indicate that the raft structure is significantly stabilized by introductions of creep deformations till the critical creep deformation at which the lattice misfit between gamma and gamma-prime phases is completely compensated by creep dislocations. When the magnitude of creep deformations exceed the critical value, the (001) lamellar interfaces become elastically unstable and a tilted lamellar interface become the most stable one. This instability of the 001 raft structure leads a tilted or wavy lamellar interfaces for reducing the internal strain energy, that is a precursor to collapse the raft structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tien, J. K. and Gamble, R. P., Metall. Trans., 3, 21572162 (1972).Google Scholar
2. Pearson, D. D., Lemkey, F. D. and Kear, B. H., Superalloys 1980, The Minerals, Metals & Materials Society, 513' 520 (1980).Google Scholar
3. Harada, H., Ohno, K., Yamagata, T., Yokokawa, T. and Yamazaki, M., Superalloys 1988, The Minerals, Metals & Materials Society, 733'742 (1988).Google Scholar
4. Socrate, S. and Parks, D. M., Acta Metall. Mater., 41, 21852209 (1993).10.1016/0956-7151(93)90389-AGoogle Scholar
5. Laberge, C. A., Fratzl, P. and Lebowitz, J. L., Phys. Rev. Lett., 75, 44484451 (1995).10.1103/PhysRevLett.75.4448Google Scholar
6. Li, D. Y. and Chen, L. Q., Scripta Mater., 37, 12711277 (1997).10.1016/S1359-6462(97)00276-5Google Scholar
7. Nabarro, F. R. N., Cress, C. M. and Kotschy, P., Acta Mater., 44, 31893198 (1996).10.1016/1359-6454(95)00423-8Google Scholar
8. Saito, M., Aoyama, T., Hidaka, K., Tamaki, H., Ohashi, T., Nakamura, S. and Suzuki, T., Scripta Mater., 34, 11891194 (1996).10.1016/1359-6462(95)00636-2Google Scholar
9. Ohashi, T., Hidaka, K. and Imano, S., Acta Mater., 45, 18011810 (1997).Google Scholar
10. Buffiere, J. Y. and Ignat, M., Acta Metall. Mater., 43, 17911797 (1995).10.1016/0956-7151(94)00432-HGoogle Scholar
11. Veron, M., Brechet, Y. and Louchet, F., Scripta Mater., 34, 18831886 (1996).Google Scholar
12. Matan, N., Cox, D. C., Rae, C. M. F. and Read, R. C., Acta Mater., 47, 20312045 (1999).10.1016/S1359-6454(99)00093-2Google Scholar
13. Ichitsubo, T., Koumoto, D., Hirao, M., Tanaka, K., Osawa, M., Yokokawa, T. and Harada, H., Acta Mater., 51, 40334044 (2003).Google Scholar
14. Ichitsubo, T. and Tanaka, K., Acta Mater., 53, 44974504 (2005).10.1016/j.actamat.2005.05.041Google Scholar
15. Epishin, A. and Link, T., Superalloys 2004, The Minerals, Metals & Materials Society, 137143 (2004).Google Scholar
16. Müller, L., Glatzel, U. and Feller-Kniepmeier, M., Acta Metall. Mater., 41, 34013411 (1993).Google Scholar
17. Khachaturyan, A. G., Theory of Structural Transformation in Solids, (Wiley, New York, 1983).Google Scholar
18. Ichitsubo, T., Koumoto, D., Hirao, M., Tanaka, K., Osawa, M., Yokokawa, T. and Harada, H., Acta Mater., 51, 48634869 (2003).Google Scholar