Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:44:04.975Z Has data issue: false hasContentIssue false

Evaluation of GaAs Regrowth on A Novel GaAs/SiO2 Composite Surface On Silicon

Published online by Cambridge University Press:  25 February 2011

J. De Boeck
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
J. Alay
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
J. Vanhellemont
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
B. Brijs
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
W. Vandervorst
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
G. Borghs
Affiliation:
Interuniverstity Micro-Electronics Center (IMEC vzw), Kapeldreef 75, B-3001 Leuven;, Belgium
M. Blondeel
Affiliation:
Laboratory for Analytical and Inorganic Chemistry, Department of Chemistry, K. U. Leuven, 200F Celestijnenlaan, B-3001 Leuven;, Belgium
C. Vinckier
Affiliation:
Laboratory for Analytical and Inorganic Chemistry, Department of Chemistry, K. U. Leuven, 200F Celestijnenlaan, B-3001 Leuven;, Belgium
Get access

Abstract

GaAs is grown by molecular beam epitaxy (MBE) on composite GaAs-SiO2 nucleation layers fabricated on Si substrates. The composite surface (CS) is formed by an initial deposition of GaAs islands by MBE, followed by oxidation of the bare Si regions surrounding the islands. The oxidation is performed at 265°C in the afterglow of a microwave induced plasma. The fabrication of the composite GaAs-SiO2 nucleation layer is compatible with the epitaxy process. GaAs growth on CS's is performed to study the seeded lateral overgrowth of GaAs on the SiO2. We find single crystal GaAs on SiO2 regions up to 50 nm wide. On the SiO2 a large density of twins is present. The GaAs seeds are not pseudomorphic and misfit dislocation segments constitute a source of threading defects. The potential of the technique for GaAs-on-Si improvement is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a review, see: Fang, S.F., Adomi, K., Iyer, S., Morkoq, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990)Google Scholar
[2] Yamaguchi, M., J. Mater. Sci. 6, 367 (1991)Google Scholar
[3] Briones, F., Gonzdles, L., and Ruiz, A., Appl. Phys. A49, 729 (1989)Google Scholar
[4] Christou, A., Stoemenos, J., Flevaris, N., Komninou, Ph., Georgakilas, A., J. Appl. Phys. 68, 3298 (1990)Google Scholar
[5] Dodson, B.W. and Taylor, P.A., Appl. Phys. Lett. 42, 642 (1986)CrossRefGoogle Scholar
[6] Luryi, S. and Suhir, E., Appl. Phys. Lett. 42, 140 (1986)CrossRefGoogle Scholar
[7] Mii, Y.J., Lin, T.L., Kao, Y.C., Wu, B.J., Wang, K.L., Nieh, C.W., Jamieson, D.N., Liu, J.K., J. Vac. Sci. Technol. B 6, 696 (1988)Google Scholar
[8] Boeck, J. De, Alay, J., Vanhellemont, J., Brijs, B., Vandervorst, W., Borghs, G., Blondeel, M., and Vinckier, C., to be published in Materials Science and Engineering, B9 (1991)Google Scholar
[9] Gruntaner, F.J. and Grunthaner, P.J., Mat. Sci. Reports 1, 65 (1986)Google Scholar
[10] Vinckier, C., Coeckelberghs, P., Stevens, G., and Jaegere, S. De, Appl.Surf.Sci. 30, 40 (1987)Google Scholar
[11] Varrio, J., Asonen, H., Lammasniemi, J., Rakennus, K., and Pessa, M., Appl. Phys. Lett. 55, 1987, (1989)CrossRefGoogle Scholar
[12] Biegelsen, D.K., Ponce, F.A., Smith, A.J., and Tramontana, J.C., in “Heteroepitaxy on Sili con”, edited by Fan, J.C.C. and Poate, J.M., Mater. Res. Soc. Symp. Proc. Vol. 67 (Pittsburgh, 1986) 45 Google Scholar
[13] Palmer, J.E., Bums, G., Fonstad, C.G., and Thompson, C.V., Appl. Phys. Lett. 55, 990 (1989)Google Scholar
[14] Tsai, H.L. and Matyi, R.J., Appl. Phys. Lett. 55, 265 (1989)CrossRefGoogle Scholar
[15] Ernst, F. and Pirouz, P., J. Appl. Phys. 64, 4526 (1988)Google Scholar
[16] Tachikawa, M. and Mori, H., Appl. Phys. Lett. 56, 2225 (1990)CrossRefGoogle Scholar
[17] Boeck, J. De, Hoof, C. Van, Deneffe, K., Mertens, R. and Borghs, G., to be publ. in Appl. Phys. Lett. (1991)Google Scholar
[18] Boeck, J. De, Zou, G., Rossum, M. Van and Borghs, G., Electron. Lett. 21, 22 (1991)CrossRefGoogle Scholar
[19] Boeck, J. De, Hoof, C. Van, Deneffe, K. and Borghs, G., Jpn.J. Appl. Phys. 30, L423 (1991)Google Scholar
[20] See e.g. contributions on stress relief in GaAs on Si, elsewhere in this volume (Mater. Res.c Soc. Symp. C, Anaheim 1991) by Freundlich, A., Grenet, C., Strobl, G., Neu, G., and Teissere, M.; and by N. Wada, S. Sakai, Y. Ueta, and K. Kawasaki.Google Scholar