No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
This paper reports work concerning a silicon-based micro pump for use in a cryogenic cooling system. The diaphragm deflection, which is critical for the control of pumping capacity, was accurately derived using a combination of ZYGO and WYKO interferometer. The relationship between the pumping capacity and differential pressure was further achieved. Stress distribution was obtained using Micro Raman spectroscopy. It was found that Young's modulus derived from the maximum deflection increases with decreasing temperature. The compressive stress concentrates at the edge centers; whereas the tensile stress occurs at the diaphragm center. There is a fairly good match between the theoretical predications and experimental observations.