Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:13:42.022Z Has data issue: false hasContentIssue false

Esm Method and Laplace Transform of Klafter-Bluken Equation for Det Analysis in Polyker Blend Like Naterials.

Published online by Cambridge University Press:  15 February 2011

önder Pekcan*
Affiliation:
Istanbul Technical University, Physics Department. Maslak, Istanbul, Turkey.
Get access

Abstract

Fluorescence decay curves from particles composed of poly(vinyl acetate) (PVAc) and naphthalene (N) labelled poly (2-ethylhexyl methacrylate) (PEHMA) were analyzed for Direct Energy Transfer (DET) from N to anthracene by the exponential series method(ESM). An averaged apparent dimension of d=2.0 were observed. The Laplace transformed Klafter-Blumen(KB) equation for the lifetime distribution was used to interpret these dimensions. Additional fluorescence experiments were carried out on Polymer films composed of the same material above. Exposure of the films to a pentane solution of 9-anthrylmethyl pivalete (AMP) transferred the AMP molecules exclusively to the PEHMA phase of the material. ESM analysis together with transformed KB equation showed that PEHMA thread has a unique dimension of 1.3 in PVAc matrix of this polymer film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Even, U., Rodemann, K. and Jortner, J. Phys.Rev.Lett. 52,2164 (1984).,Google Scholar
2. Klafter, J., Drake, J.M. eds. Molecular Dynamics in Restricted, Geometries (Wiley New York 1989).Google Scholar
3. Dozier, W.D., Drake, J.M. and Klafter, J., Phys.Rev.Lett. 56, 197(1980).Google Scholar
4. Levitz, P. and Drake, J.M., Phys.Rev.Lett.58,686 (1987).Google Scholar
5. Kopelman, R., Parus, S. and Prasad, J., Phys.Rev.Lett.,56,1742, (1986).Google Scholar
6. Pekcan, ö., Winnik, M.A. and Croucher, M.D., Phys.Rev.Lett.61, 641(1988).Google Scholar
7. Pekcan, ö., Winnik, M.A. and Croucher, M.D., Chem. Phys. 146,283, (1990).Google Scholar
8. James, D.R. and Ware, W.R., Chem.Phys.Letter 126,7 (1986).Google Scholar
9. Siemiarczuk, A. and Ware, W.R., Chem.Phys.Letter, 140,277, (1987).Google Scholar
10. James, D.R., Lin, Yuan-Shen, Peterson, N.O., Siemiarczuk, A., Wagner, B.D., and Ware, W.R., SPIE Fluorescence Detection 743,117, (1987).Google Scholar
11. Siemiarczuk, A., Wagner, B.D. and Ware, W.R., J.Phys.Chem. 94, 1661,(1990).Google Scholar
12. Wagner, B.D. and Ware, W.R., J.Phys.Chem, 94, 3489 (1990).Google Scholar
13. Pekcan, ö., Chem.Phys.Lett. 198,20(1992).Google Scholar
14. Fdrster, Th. Z. Naturforsch 49,321 (1949).Google Scholar
15. Klafter, J. and Blumen, A., J.Chem.Phys. 80,875 (1984).Google Scholar
16. Klafter, J. and Blumen, A., J.Lumens. 34, 77 (1985).Google Scholar
17. Klafter, J., Blumen, A., Zumofen, G. and Drake, J.M., J. Lumines 38, 113 (1987).Google Scholar
18. Yang, C.L. and El-Sayed, M.A., J.Phys.Chem. 90,5720(1986).Google Scholar
19. Blumen, A., Klafter, J. and Zumofen, G., Optical Spectroscopy of Glasses ed. Zschokke, I.; Reidel Dordrecht, Holland (1986)Google Scholar
20. Pekcan, O., Egan, L.S., Winnik, M.A., Croucher, M.D., Macromolecules, 23,2210 (1990).Google Scholar