Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T13:52:45.594Z Has data issue: false hasContentIssue false

ERDA analysis of ZnSx(OH)y thin films obtained by chemical bath deposition

Published online by Cambridge University Press:  21 March 2011

Sven Neve
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, D-14109 Berlin, Germany, phone/fax: ++49-30-8062-2789
Wolfgang Bohne
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, D-14109 Berlin, Germany, phone/fax: ++49-30-8062-2789
Jörg Röhrich
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, D-14109 Berlin, Germany, phone/fax: ++49-30-8062-2789
Roland Scheer
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100, D-14109 Berlin, Germany, phone/fax: ++49-30-8062-2789, email: [email protected]
Get access

Abstract

Thin films of Zn-compounds grown in a chemical bath have been studied by Elastic Recoil Detection Analysis (ERDA). The bath contained zinc acetate, thiourea and complexing agents such as ammonia and hydrazine. Large amounts of hydrogen and oxygen are detected within all samples. A strong effect of the pH of the solution is revealed: At high pH (>11.5) mainly ZnS growth takes place, while at lower pH Zn(OH)2 is the dominant product. Hence the pH of the solution can be used to adjust the film stoichiometry. Deposition of Zn-compound films is possible without ammonia in the solution while presence of hydroxide ions and hydrazine species is necessary. It is proposed that film formation takes place via a complex combining hydrazine and hydroxide ligands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nair, P.K., Nair, M.T.S., Garcia, V.M., Arenas, O.L., Pena, Y., Castillo, A., Ayala, I.T., Gomezdaza, O., Sanchez, A., Campos, J., Hu, H., Suarez, R., Rincon, M.E., Sol. Energy Mater. Sol. Cells 52, 313 (1998).Google Scholar
2. Chen, Q., Qian, Y.T., Chen, Z.Y., Shi, L., Li, X.G., Zhou, G.E., Zhang, Y.H., Thin Solid Films 272, 1(1996).Google Scholar
3. Nair, P.K., Nair, M.T.S., Semicond. Sci. Technol 7, 239244 (1992).Google Scholar
4. Dona, J.M., Herrero, J., J. Electrochem. Soc. 141, 205 (1994).Google Scholar
5. Mokili, B., Froment, M., Lincot, D., JOURNAL DE PHYSIQUE IV 5, C3/261 (1995).Google Scholar
6. Chopra, K. L., Kainthla, R.C., Pandya, D.K., Thakoor, A.P., Phys. Thin Films 12, 167 (1982).Google Scholar
7. Marcotrigiano, G., Peyronel, G., Battistuzzi, R., J. Chem. Soc. Perkin II, 1539 (1972).Google Scholar
8. Oladeji, I.O., Chow, L., Thin Solid Films 339, 148 (1999).Google Scholar
9. Vidal, J., Vigil, O., Melo, O., Lopez, N., Zelaya-Angel, O., Mater. Chem. Phys. 61, 139 (1999).Google Scholar
10. O'Brian, P., Otway, D.J., Smyth-Boyle, D., Thin Solid Films 361–362, 17 (2000).Google Scholar
11. Herrero, J., Gutierrez, M.T., Guillen, C., Dona, J.M., Martinez, M.A., Chaparro, A.M., Bayon, R., Thin Solid Films 361–362, 28 (2000).Google Scholar
12. Bohne, W., Röhrich, J., Röschert, G., Nucl. Instr. and Meth. B 136–138, 633 (1998).Google Scholar
13. Mayer, M., SIMNRA User Guide, Max-Planck-Institut für Plasmaphysik, (Garching 1997).Google Scholar
14. Beverskog, B., Puigdomenech, I., Corros. Sci. 39, 107 (1997).Google Scholar