Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:11:26.910Z Has data issue: false hasContentIssue false

Epitaxial IV-VI Semiconductor Films

Published online by Cambridge University Press:  25 February 2011

T. K. Chu
Affiliation:
Naval Surface Weapons Center, 10901 New Hampshire Ave., Silver Spring, MD 20903-5000
A. Martinez
Affiliation:
Physics Department, The American University, Washington, DC 20016
Get access

Abstract

Epitaxial films of IV-VI semiconductors and their alloys form the basis of an infrared detector technology that offers advantages in material stability as well as spectral versatility. These films are prepared by epitaxial hot-wall techniques and their material properties are essentially the same as those of bulk crystals. Because of their stability, multilayer growths of the materials can be achieved in a straight-forward manner. To date, multi-color detectors and small scale two-color detector arrays have been demonstrated successfully. A brief review of the growth method and the growth characteristics is given. Recent advances in superlattice research, especially those of interest to electro-optical devices, will be discussed. These include persistent photoconductivity and sub-bandgap optical transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Holloway, H. and Walpole, J. N., Prog. Crystal Growth Charact. 2 49 (1979).Google Scholar
Partin, D. L., Paper R2.4 Material Research Society Meeting, Dec. 1986.Google Scholar
3. Zemel, J. N., Solid State Surface Science, Vol.1, pp. 291403, (M., Green, Editor) Dekker, New York, 1969.Google Scholar
4. Hudock, P., Trans. Metall. Soc. AIME 239 339 (1967).Google Scholar
5. Lopez-Otero, A., Thin Solid Films, 49 3 (1978).Google Scholar
6. See, for example, Dalven, R., Solid-State Physics, 28 179, 1973, and G. Nimtz and B. Schlicht, in Narrow Band Semiconductors Springer Tracts in Modern Physics 98, (G. Höhler, Editor), Springer-Verag, New York 1983.Google Scholar
7. Weiser, K., Klein, K. A., and Ainhorn, M., Appl. Phys. Lett. 34 607 (1979).CrossRefGoogle Scholar
8. Jensen, J. D. and Schoolar, R. B., J. Elect. Materials 7 239 (1978).Google Scholar
9. Hohnke, D. K. and Kaiser, S. W., J. Appl. Phys. 43 897 (1974).Google Scholar
10. Chu, T. K., Bouley, A. C. and Black, G. M., Proc.Intern. Soc. Opt. Eng. 409, 89 (1983).Google Scholar
11. -A7-Bouley, C., Chu, T. K. and Black, G. M., Proc. Intern. Soc. Opt. Eng. 285 26 (1981).Google Scholar
12. Bouley, A. C., Jensen, J. D., Black, G. M. and Foti, S., Proc. Intern. Soc. Opt. Eng. 246 2 (1980).Google Scholar
13. Maurer, W., Infrared Phys. 23 257 (1983).CrossRefGoogle Scholar
14. Chu, T. K., Bouley, A. C. and Black, G. M., Proc. Intern. Soc. Opt. Eng. 285 33 (1981).Google Scholar
15. Duh, K. and Preier, H., Thin Solid Films 27 247 (1975).CrossRefGoogle Scholar
16. See for example, Kinoshita, M. and Fujiyasu, H., J. Appl. Phys. 51 5845 (1980), and H. Clemens, E. J. Fantner and G. Bauer, Rev. Sci. Instrum. 54 685 (1983).Google Scholar
17. Partin, D. L., J. Vac. Sci. Tech. 21 1 (1982).Google Scholar
18. The Growth and Characterization were presented at the Meeting of The American Physical Society, Las Vegas, 1986. (Bull. Am. Phys. Soc. 31 522)Google Scholar
19. Martinez, A., Chu, T. K. and Allgaier, R. S., Proc. Intern. Conf.: Appl. of High Mag. Field in Semi. Phys. 1986, to be published.Google Scholar
20. Chu, T. K., Agassi, D. and Martinez, A., to be published.Google Scholar
21. Santiago, F., Martinez, A., and Chu, T. K., Presented at the 33rd Symposium of the Am. Vac. Soc., Oct. 1983, to be published.Google Scholar