Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T08:05:31.307Z Has data issue: false hasContentIssue false

Epitaxial Growth of AlN on Si Substrates with Intermediate 3C-SiC as Buffer Layers

Published online by Cambridge University Press:  10 February 2011

S. Q. Hong
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
H. M. Liaw
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
K. Linthicum
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
P. Fejes
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
S. Zollner
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
M. Kottke
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
S. R. Wilson
Affiliation:
Motorola Inc., Semiconductor Products Sector, 2100 E. Elliot Road, Tempe, ZA 85282
Get access

Abstract

Single crystalline AlN was successfully grown on a 3C-SiC coated Si (111) substrate by organometallic vapor phase epitaxy. The 3C-SiC film was obtained via the conversion of the Si near-surface region to SiC using gas-source molecular beam epitaxy. The quality of the AlN was mainly controlled by that of the SiC. The effects of Si pits and SiC hillocks formed during the conversion on subsequent AlN growth are discussed. Process optimization is suggested to improve the SiC buffer layer for subsequent AlN deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Trew, R. J., Yan, J., and Mock, P. M., Proc. IEEE 79–5, 598 (1991)10.1109/5.90128Google Scholar
[2] Nishino, S., Powell, J.A. and Will, H.A., Appl. Phys. Letters 42, 460(1983).10.1063/1.93970Google Scholar
[3] Sywe, B.S., Yu, Z.J., Burckhard, S., Edgar, J. H. and Chaudhuri, J., J. Electrochem. Soc. 141, 510(1994).10.1149/1.2054756Google Scholar
[4] Schmitt, J., Troffer, T., Christiansen, K., Christiansen, S., Helbig, R., Pensl, G., Strunk, H.P., Materials Science Forum 264–268, pt.1, 247 (1998).Google Scholar
[5] Davis, R. F., Tanaka, S., Rowland, L. B., Kern, R. S., Sitar, Z., Ailey, S.K., Wang, C., J. of Crystal Growth 164, 132(1996).10.1016/0022-0248(95)01023-8Google Scholar
[6] Tanaka, S., Kern, R.S., Bentley, J. and Davis, R.F., to be submitted.Google Scholar
[7] Liaw, H. M., Hong, S.Q., Fejes, P., Werho, D., Tompkins, H., Zollner, S., Wilson, S. R., Linthicum, K. and Davis, R. F., this volume.Google Scholar
[8] Li, J.P. and Steckl, A.J., J. Electrochem. Soc. 142, p634 (1995).10.1149/1.2044113Google Scholar