Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:32:45.217Z Has data issue: false hasContentIssue false

Epitaxial Ge Films on Si Substrates

Published online by Cambridge University Press:  28 February 2011

J.S. Mccalmont
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011
D. Robinson
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011
K.M. Lakin
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011
H.R. Shanks
Affiliation:
Microelectronics Research Center, Iowa State University, Ames, IA 50011
Get access

Abstract

Thin films of germanium have been prepared using an ultrahigh vacuum ionized-cluster beam (ICB) system. The dopant concentration of the films was varied by alloying the germanium source material with aluminum, a p-type dopant. X-ray diffraction analysis of the films has shown that an epitaxial (100) germanium film can be deposited on a (100) silicon substrate with a substrate temperature as low as 300°C. The results confirm that ICM deposition can be used to prepare epitaxial germanium films, but ionization of the clusters does not appear to affect the film growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsaur, B.-Y., Geis, M.W., Fan, J.C.C., and Gale, R.P., Appl. Phys. Lett. 38 (10), 779 (1981).Google Scholar
2. Fletcher, R.M., Wagner, D.K., and Ballantyne, J.M., Mat. Res. Soc. Symp. Proc. 25, 417 (1984).Google Scholar
3. Abdul-Awal, M., Lee, E.H., Koos, G.L., Chan, E.Y., Celler, G.K., and Sheng, T.T., Mat. Res. Soc. Symp. Proc. 67, 93 (1986).Google Scholar
4. Bean, J.C., Sheng, T.T., Feldman, L.C., Fiory, A.T., and Lynch, R.T., Appl. Phys. Lett. 44 (1), 102 (1984).Google Scholar
5. Wang, P.D., Selvin, E., and Robinson, G.Y., J. Vac. Sci. Technol. B 2 (2), 209 (1984).Google Scholar
6. Sheldon, P., Jones, K.M., Hayes, R.E., Tsaur, B.-Y., and Fan, J.C.C., Appl. Phys. Lett. 45 (3), 274 (1984).Google Scholar
7. Sheldon, P., Yacobi, B.G., Asher, S.E., Jones, K.M., Hafich, M.J., and Robinson, G.Y., J. Vac. Sci. Technol. A 4 (3), 889 (1986).Google Scholar
8. Baribeau, J.M., Jackman, T.E., Maigne, P., Houghton, D.C., and Denhoff, M.W., presented at the 1986 AVS Symposium, Baltimore, MD (unpublished).Google Scholar
9. Yamagishi, C., Sano, Y., and Nonaka, T., Proceedings of the International Ion Engineering Congress ISIAT 83, Kyoto, Japan, 1983.Google Scholar
10. McCalmont, J.S., Shanks, H.R., and Lakin, K.M., in Proceedings of the International Workshop on Ionized Cluster Beam Technique, Tokyo, Japan, 1986.Google Scholar
11. McCalmont, J.S., M.S. thesis, Iowa State University, 1986.Google Scholar
12. Takagi, T., Mat. Sci. Res. 17, Emergent Process Methods for High-Technology Ceramics, edited by Davis, R.F., Palmour, H. III, and Porter, R.L., 425 (1984).Google Scholar
13. Trumbore, F.A. and Tartaglia, A.A., J. Appl. Phys. 29, 1511 (1958).Google Scholar
14. Trumbore, F.A., Porbansky, E.M., and Tartaglia, A.A., J. Phys. Chem. Solids 11, 239 (1959).Google Scholar