Published online by Cambridge University Press: 21 February 2011
420 nm thick amorphous Si layers buried in a Si (100) or Si (111) matrix, produced by 350 keV Si-implantation, were irradiated using a pulsed ruby laser. Time-resolved reflectivity measurements show that melting can be initiated buried in the samples at the crystalline-amorphous interface. Melting is immediately followed by explosive crystallization of the buried amorphous layer, which is started from the crystalline top layer. The velocity of this self-sustained crystallization process is determined to be 15.0 ± 0.5 m/s for Si (100) and 14.0 ± 0.5 m/s for Si (111). RBS and cross-section TEM reveal that epitaxially grown crystalline Si, containing a high density of twin defects, is formed in both the Si (100) and the Si (111) sample.