Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-07T23:01:19.614Z Has data issue: false hasContentIssue false

Epitaxial Explosive Crystallization of Amorphous Silicon Layers Buried in a Silicon (100) and (111) Matrix

Published online by Cambridge University Press:  21 February 2011

P. A. Stolk
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands C.W.T. BULLE-LIEUWMA and D.E.W. VANDENHOUDT Philips Research Laboratories, P.O. Box 50000, 5600 JA Eindhoven, the Netherlands
A. Polman
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands C.W.T. BULLE-LIEUWMA and D.E.W. VANDENHOUDT Philips Research Laboratories, P.O. Box 50000, 5600 JA Eindhoven, the Netherlands
W. C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands C.W.T. BULLE-LIEUWMA and D.E.W. VANDENHOUDT Philips Research Laboratories, P.O. Box 50000, 5600 JA Eindhoven, the Netherlands
Get access

Abstract

420 nm thick amorphous Si layers buried in a Si (100) or Si (111) matrix, produced by 350 keV Si-implantation, were irradiated using a pulsed ruby laser. Time-resolved reflectivity measurements show that melting can be initiated buried in the samples at the crystalline-amorphous interface. Melting is immediately followed by explosive crystallization of the buried amorphous layer, which is started from the crystalline top layer. The velocity of this self-sustained crystallization process is determined to be 15.0 ± 0.5 m/s for Si (100) and 14.0 ± 0.5 m/s for Si (111). RBS and cross-section TEM reveal that epitaxially grown crystalline Si, containing a high density of twin defects, is formed in both the Si (100) and the Si (111) sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Polman, A. et al., Nucl. Instr. and Methods B37/38, 935 (1989)Google Scholar
2 Narayan, J. and White, C.W., Appl. Phys. Lett. 44, 35 (1984)Google Scholar
3 Sinke, W.C. and Saris, F.W., Phys. Rev. Lett. 53, 2121 (1984)Google Scholar
4 Lowndes, D.H., Jellison, G.E., Pennycook, S.J., Withrow, S.P. and Mashburn, D.N., Appl. Phys. Lett. 48, 1389 (1986)Google Scholar
5 Bruines, J.J.P., van Hal, R.P.M., Boots, H.M.J., Polman, A. and Saris, F.W., Appl. Phys. Lett. 49, 1160 (1986)Google Scholar
6 Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D., Cullis, A.G. and Chew, N.G., Phys. Rev. Lett.. 52, 2360 (1984)Google Scholar
7 Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 42, 698 (1983)Google Scholar
8 Tsao, J.Y. and Peercy, P.S., Phys. Rev. Lett. 58, 2782 (1987)Google Scholar
9 Lowndes, D.H., Pennycook, S.J., Jellison, G.E. Jr., Withrow, S.P. and Mashburn, D.N., J. Mater. Res. 2, 648 (1987)Google Scholar
10 Roorda, S. and Sinke, W.C., Appl. Surf. Sci. M, 188 (1989)Google Scholar
11 Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 3 (1988)Google Scholar
12 Auston, D.H., Surko, C.M., Venkatesan, T.N.C., Slusher, R.E. and Golovchenko, J.A., Appl. Phys. Lett. 33, 437 (1978)Google Scholar
13 Polman, A., Mous, D.J.W., Stolk, P.A., Sinke, W.C., Bulle-Lieuwma, C.W.T. and Vandenhoudt, D.E.W. (unpublished)Google Scholar
14 Sharev, K.M., Baum, B.A. and Gel'd, P.V., High Temperature 15, 548 (1977)Google Scholar
15 Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M. and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983)Google Scholar
16 Cullis, A.G., Chew, N.G., Webber, H.C. and Smith, D.J., J. Cryst. Growth 68, 624 (1984)Google Scholar
17 Polman, A., Roorda, S., Stolk, P.A. and Sinke, W.C. (unpublished)Google Scholar