Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:16:14.781Z Has data issue: false hasContentIssue false

The Epitactic Growth of Oxides on Si

Published online by Cambridge University Press:  25 February 2011

Scott R. Summerfelt*
Affiliation:
Texas Instruments, Inc., Dallas, TX 75243
Get access

Abstract

The epitactic growth of oxides on Si requires structural and chemical compatibility between the substrate and film. The growth of (Ba0.7,Sr0.3)TiO3 (BST) by pulsed laser deposition on HF-cleaned Si (001) and Si with a buffer layer of CaF2 was studied. The BST can form a low misfit interface with Si and CaF2 but chemical reactions between the BST and the Si prevented the epitactic growth on Si. An x-ray photoelectron spectroscopy (XPS) depth profile indicated that the BST had reacted to form a silicate and titanium silicide. The BST on CaF2 -Si(00l) substrate was partially epitactic and formed a 45° rotated orientation relationship such that the Si (110) is parallel to the BST (100).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fork, D. K., Fenner, D. B., Connel, G. A. N., Phillips, J. M. and Geballe, T. H., Appl. Phys. Lett. 57, 1137, (1990).Google Scholar
2. Fukumoto, H., Imura, T. and Osaka, Y., Jap. J. Appl. Phys. 27, L1404 (1988).Google Scholar
3. Egami, K., Mikami, M. and Tsuya, H., Appl. Phys. Lett. 43, 757, (1983).Google Scholar
4. Yoshimoto, M., Nagata, H., Tsukahara, T. and Koinuma, H., Jap. J. Appl. Phys. 29, L11990 (1990).Google Scholar
5. Cho, C., Liu, H., Gnade, B. E. and Chen, C., Extended Abstracts of the 22nd Conference on Solid State Devices and Materials (Japan Society of Applied Physics) 1167 (1990).Google Scholar
6. Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. and Bando, Y., Appl. Phys. Lett. 56, 527, (1990).CrossRefGoogle Scholar
7. Norton, M. G. and Carter, C. B., J. Mater. Res. 5, 2762, (1990).Google Scholar
8. Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112, (1989).CrossRefGoogle Scholar
9. Chase, J. M. W., Davies, C. A., Downey, J. J. R., Frurip, D. J., McDonald, R. A. and Syverud, A. N., J. Pys. Chem. Ref. Data. 14 Suppl. 1, (1985).Google Scholar
10. Panitz, J. K. G. and Hu, C.-C., J. Vac. Sci. Technol. 16, 315, (1979).CrossRefGoogle Scholar
11. Dharmadhikari, V.S. and Grannemann, W. W., J. Vac. Sci. Technol. A. 1,483 (1983).CrossRefGoogle Scholar
12. Fenner, D. B., Viano, A. M., Fork, D. K., Connell, G. A. N., Boyce, J. B., Ponce, F. A. and Tramontana, J. C., J. Appl. Phys. 69, 2176, (1991).CrossRefGoogle Scholar