Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T17:59:02.159Z Has data issue: false hasContentIssue false

Eosin Y-sensitized ZnO/TiO2 for efficient visible light photocatalytic hydrogen evolution

Published online by Cambridge University Press:  23 August 2011

Haipei Liu
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Dengwei Jing
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Liejin Guo*
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
Get access

Abstract

In this work a series of Eosin Y-ZnO(x%)/TiO2 were prepared. ZnO well dispersed on the surface of TiO2, which improves the adsorption of Eosin Y and the excited electron to transfer to the conduction band of TiO2. Therefore the visible light activity of 0.2%Pt-Eosin Y-ZnO(x%)/TiO2 is much higher than that of the 0.2%Pt-Eosin Y-TiO2 and 0.2%Pt-Eosin Y-ZnO. The 0.2%Pt-Eosin Y- ZnO(1.5%)/TiO2 has the highest visible light activity among the catalysts coupled with various ZnO amount, whose activity is increased by a factor of 3.5 compared to that of 0.2%Pt-Eosin Y-TiO2. It is proposed that, 0.2%Pt-Eosin Y-ZnO(1.5%)/TiO2 has the optimal trapping sites of carriers and thickness of the space-charge layer on the TiO2 particle surface, so these factors result a more efficient charge separation, an increased lifetime of the charge carriers, and the enhanced of hydrogen production .

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anpo, M., Takeuchi, M., J. Catal. 216, 505 (2003)10.1016/S0021-9517(02)00104-5Google Scholar
Meng, Ni, KHL, Michael, Dennis, YCL, Sumathy, K, Renew Sus Energy Rev. 11, 401 (2007)Google Scholar
Zou, Z, Ye, J, Sayama, K, Arakawa, H, Nature 414, 625 (2001)10.1038/414625aGoogle Scholar
Yang, HH, Guo, LJ, Yan, W, Liu, HT, Journal of Power Sources 159, 1305 (2006)10.1016/j.jpowsour.2005.11.106Google Scholar
Graztel, M, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145 (2003)Google Scholar
Abe, R., Hara, K., Sayama, K., Domen, K., Arakawa, H., J. Photochem. Photobiol. A: Chem. 137, 63 (2000)10.1016/S1010-6030(00)00351-8Google Scholar
Abe, R., Sayama, K., Chem. Phys. Lett. 362, 441 (2002)10.1016/S0009-2614(02)01140-5Google Scholar
Sabate, J., Cervera-March, S., Simarro, R., Gimenez, J., Int. J. Hydrogen Energy 15, 115 (1990)10.1016/0360-3199(90)90033-UGoogle Scholar
Abe, R., Hara, K., Sayama, K., Arakawa, H., J. Photochem. Photobiol. A: Chem. 166, 115 (2004)10.1016/j.jphotochem.2004.04.031Google Scholar
Marc, G., Augugliaro, V., Lopez-Mun, M.J., J. Phys. Chem. B. 105, 1026 (2001)10.1021/jp003172rGoogle Scholar
Marc, G., Augugliaro, V., Lopez-Mun, M.J., J. Phys. Chem. B. 105, 1033 (2001)10.1021/jp003173jGoogle Scholar
Chen, S.F., Zhao, W., Liu, W., Zhang, S.J., Applied Surface Science 255, 2478 (2008).10.1016/j.apsusc.2008.07.115Google Scholar
Liu, S., Chen, X., Chen, X., Chin. J. Catal. 27, 697 (2006)10.1016/S1872-2067(06)60037-5Google Scholar
Li, Y.X., Ma, G.F., Peng, S.Q., Lu, G.X., S.B Li Applied Surface Science 254, 6831 (2008)10.1016/j.apsusc.2008.04.075Google Scholar
15. Li, Di, Hajime, Haneda, Journal of Photochemistry and Photobiology A: Chemistry 160, 203 (2003)10.1016/S1010-6030(03)00212-0Google Scholar
Chen, S.F., Zhang, S.J., Liu, W., Zhao, W., Hazard, J.. Mater. J. Hazard. Mater. 155, 320 (2008)Google Scholar
Liu, S.X., Liu, H., Chem Ind Press, Beijing, China, 71, (2005)Google Scholar