No CrossRef data available.
Article contents
Enzymatic catalysed synthesis and gelation of ionic peptides for 3D cell culture applications.
Published online by Cambridge University Press: 22 August 2012
Abstract
The enzymatic catalyzed synthesis and gelation of an ionic peptide and its use to create hydrogels for 3D cell culture is discussed. Time resolved small angle scattering in conjunction with imaging technique allowed the structural changes occurring through this enzymatic reaction to be assessed. In turn, the structural information about the fibrillar network and its local density proved key in facilitating the understanding of the relationships between self-assembly behavior, local nanostructure and final physical properties of the materials. The understanding of the gelation process of these materials allowed the design of a simple and efficient methodology to prepare gels for cell culture. Tetrapeptide/enzyme solution containing cells could be injected into cell culture plate with subsequent gelation of the materials leading to encapsulation of the cells into a 3D network. This system was evaluated for the 3D cell culture of human dermal fibroblasts (HDF). Microscopy showed that cells were uniformly distributed within the gel matrix. Cell counting and live/dead staining showed proliferation of HDF with limited cell death over 10 days.
Keywords
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1417: Symposium KK – Biomaterials for Tissue Regeneration , 2012 , mrsf11-1417-kk01-04
- Copyright
- Copyright © Materials Research Society 2012