No CrossRef data available.
Article contents
Enzymatic Biofuel Cell with Self-regulating Enzyme-Nanotube Ensemble Films
Published online by Cambridge University Press: 03 February 2012
Abstract
Nanostructured carbons have been widely used for fabricating enzyme-modified electrodes due to their large specific surface area. However, because they are random aggregates of particular or tubular nanocarbons, the post-modification of enzymes to their intra-nanospace is generally hard to control. Here, we describe a free-standing film of carbon nanotube forest (CNTF) that can form a hybrid ensemble with enzymes through liquid-induced shrinkage. This provides in-situ regulation of itsintra-nanospace (inter CNT pitch) to the size of enzymes, and eventually serves as a highly active electrode. The CNTF ensemble with fructose dehydrogenase (FDH) showed the oxidation current density of 16 mA cm-2in stirred 200 mM fructose solution. The power density of a biofuel cell using the FDH-CNTF anode and the Laccase-CNTF cathode reached 1.8 mW cm-2(at 0.45 V) in the stirred oxygenic fructose solution, more than 80 % of which could be maintained after continuous operation for 24 h. Application of the free-standing, flexible character of the enzyme-CNTF ensemble electrodes is demonstrated via their use in the patch or wound form.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1415: Symposium HH/II/TT – MEMS, BioMEMS and Bioelectronics–Materials and Devices , 2012 , mrsf11-1415-ii03-06
- Copyright
- Copyright © Materials Research Society 2012