Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T20:07:11.526Z Has data issue: false hasContentIssue false

Environment of Er Doped in a-Si:H and Its Relation with Photoluminescence Spectra

Published online by Cambridge University Press:  01 February 2011

Minoru Kumeda
Affiliation:
[email protected], Kanazawa University, Div. Electrical Engineering and Computer Science, Grad. Scholl of Natural Sci. & Tech., Kakuma-machi, Kanazawa, N/A, 920-1192, Japan, 81-76-234-4875, 81-76-234-4870
Yoshitaka Sekizawa
Affiliation:
[email protected], Kanazawa Univ., Div. Electrical Engineering and Computer Science, Grad. School of Natural Sci. & Tech., Kanazawa, N/A, 920-1192, Japan
Akiharu Morimoto
Affiliation:
[email protected], Kanazawa Univ., Div. Electrical Engineering and Computer Science, Grad. School of Natural Sci. & Tech., Kanazawa, N/A, 920-1192, Japan
Tatsuo Shimizu
Affiliation:
[email protected], Kanazawa Univ., Professor Emeritus, Kanazawa, N/A, 920-1192, Japan
Get access

Abstract

The crystal-field potential at the Er3+ ion surrounded by six oxygen ions is expanded in terms of polynomials. After converting it into equivalent angular momentum operators, the Stark-splitting of the 4I15/2 ground state of the Er3+ ion is calculated. Influence of the change in the environment of the Er3+ ion on the shift of the energy levels is investigated and compared with the observed Er photoluminescence spectrum in a-Si:H. The scattering of the calculated energy levels by the structural fluctuation around the Er3+ ion is also compared with the linewidth of the component photoluminescence lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tessler, L. R., Piamonteze, C., Alves, M. C. M., and Tolentino, H.: J. Non-Cryst. Solids, 266–269, 598 (2000).Google Scholar
2. Ishii, M. and Komukai, Y.: Appl. Phys. Lett., 79, 934 (2001)Google Scholar
3. Milori, D. M. B. P., Moraes, I. J., Hernandes, A. C., Souza, R. R. de, Li, M.S., Terrile, M. C., and Barberis, G. E.: Phys. Rev. B, 51, 3206 (1995)Google Scholar
4. Przybylinska, H., Jantsch, W., Belevitch, Y. S., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R. J., and Sealy, B. J.: Phys. Rev. B, 54, 2532 (1996)Google Scholar
5. Carey, J. D., Donegan, J. F., Barklie, R. C., Priolo, F., Franzo, G., and Coffa, S.: Appl. Phys. Lett., 69, 3854 (1996)Google Scholar
6. Wortman, D. E., Morrison, C. A., and Bradshaw, J. L.: J. Appl. Phys., 82, 2580 (1997)Google Scholar
7. Hutchings, M. T.: Solid State Physics, Vol. 16, edited by Seitz, F. and Turnbull, D. (Academic Press, 1965) p. 227.Google Scholar
8. Kumeda, M., Takahashi, M., Morimoto, A., and Shimizu, T.: Mat. Res. Soc. Symp. Proc. Vol. 862, A18.1 (2005)Google Scholar
9. Eyring, H., Wlater, J., and Kimball, G. E.: Quantum Chemistry (John Wiley & Sons, Inc., 1944).Google Scholar