Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T01:55:35.527Z Has data issue: false hasContentIssue false

Enhancement of Zirconolite Dissolution Due to Water Radiolysis

Published online by Cambridge University Press:  19 October 2011

Nelly Toulhoat
Affiliation:
[email protected], Institut de Physique Nucleaire de Lyon, CNRS/Universite Claude Bernard Lyon 1, 4 rue Enrico Fermi, Villeurbanne, 69622, France, + 33 4 72 44 80 62, + 33 4 72 44 80 04
Nelly Toulhoat
Affiliation:
[email protected], Institut de Physique Nucleaire de Lyon, CNRS/Universite Claude Bernard Lyon 1, 4 rue Enri co Fermi, Villeurbanne, 69622, France
Nathalie Moncoffre
Affiliation:
[email protected], Institut de Physique Nucleaire de Lyon, CNRS/Universite Claude Bernard Lyon 1, 4 rue Enrico Fermi, Villeurbanne, 69622, France
Pierre Toulhoat
Affiliation:
[email protected], UFR de Chimie Biochimie, CNRS/ISA Universite Claude Bernard Lyon 1, Villeurbanne, 69622, France
Christophe Jegou
Affiliation:
[email protected], DEN/DTCD/SECM, Commissariat à l'Energie Atomique, CEN Valrho, Bagnols sur Ceze cedex, 30207, France
Catherine Corbel
Affiliation:
[email protected], DSM/DRECAM/LSI, Commissariat à l'Energie Atomique, Ecole Polytechnique, palaiseau, 91128, France
Isabelle Bardez
Affiliation:
[email protected], DEN/DTCD/SECM, Commissariat à l'Energie Atomique, CEN Valrho, Bagnols sur Ceze cedex, 30207, France
Gilles Leturcq
Affiliation:
[email protected], DEN/DRCP/SCPS, Commissariat à l'Energie Atomique, CEN Valrho, Bagnols sur Ceze cedex, 30207, France
Get access

Abstract

Zirconolite is a candidate host material for conditioning minor tri- and tetra-valent actinides arising from enhanced nuclear spent fuel reprocessing and partitioning, in the case of disposal of the nuclear waste. Its chemical durability has been studied here under charged particle-induced radiolysis (He2+ and proton external beams) to identify the possible effects of water radiolysis on the dissolution rates in pure water and to describe the alteration mechanisms. Two experimental geometries have been used in order to evaluate the influence of the following parameters: solid irradiation, water radiolysis. In the first geometry the beam gets through the sample before stopping at the surface/water interface. In the second one the beam stops before the surface/water interface. Results on the elemental releases due to the enhanced dissolution of the zirconolite surface during charged particle-induced irradiation of water are presented. Under radiolysis, an increase of one order of magnitude is observed in the Ti, Zr and Nd elemental releases. No difference in the total elemental releases can be noticed when the solid is also irradiated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fillet, C., Marillet, J., Dussossoy, J. L., Pacaud, F., Jacquet Francillon, N., Phalippou, J., Ceramic Trans. 87, 531 (1998).Google Scholar
2. Advocat, T., Fillet, C., Marillet, J., Leturcq, G., Boubals, J. M., Bonnetier, A., Mater. Res. Soc. Symp. Proc. 506, 55 (1998).Google Scholar
3. Leturcq, G., Advocat, T., Hart, K., Berger, G., Lacombe, J., Bonnetier, A., Am. Mineral. 86, 871 (2001).Google Scholar
4. Guy, C., Audubert, F., Lartigue, J. E., Latrille, C., Advocat, T., Fillet, C., C. R. Physique 3, 827 (2002).Google Scholar
5. Leturcq, G., McGlinn, P. J., Barbe, C., Blackford, M. G., Finnie, K. S., Applied Geochemistry 20, 899 (2005).Google Scholar
6. Fillet, C., Advocat, T., Bart, F., Leturcq, G., Rabiller, H., C. R. Chimie 7, 1165 (2004).Google Scholar
7. Ferradini, C., Jay-Gerin, J. P., Can. J. Chem. 77, 1542 (1999).Google Scholar
8. Tribet, M., Gavarini, S., Toulhoat, N., Moncoffre, N., Chevarier, A., Jègou, C., Leturcq, G., Corbel, C., Toulhoat, P., Radiochim. Acta 94, 585 (2006).Google Scholar
9. Knauss, K. G., Dibley, M. J., Bourcier, W. L., Shaw, H. F., Applied Geochemistry 16, 1115 (2001).Google Scholar
10. Brown, P. L., Curti, E. and Grambow, B., “Chemical Thermodynamics of zirconium”, chemical thermodynamics, ed. by OECD (Elsevier, 2005), pp.100110 and 403–427.Google Scholar
11. Munakata, H., Oumi, Y., Miyamoto, A., J. Phys. Chem. B 105, 3493 (2001).Google Scholar
12. Fois, E., Gamba, A., Spano, E., J. Phys. Chem. B 108, 9558 (2004).Google Scholar