Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:02:38.084Z Has data issue: false hasContentIssue false

Enhancement of Lateral Solid Phase Epitaxial Growth of Si on SiO2 with 31P Implantation

Published online by Cambridge University Press:  28 February 2011

C. S. Pai
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
M. Cerullo
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A. E. White
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The lateral solid phase epitaxial growth of amorphous Si on SiO2 patterns with 31P implantation is studied. By implanting 31P into only the surface region of the sample to form a doped channel, the Si growth rate is enhanced and the random crystallization of Si is suppressed. The maximum length of lateral solid phase epitaxial Si obtained from samples with the doped channel (∼9μπι) is a factor of 3 more than that of the undoped sample. This Si on SiO2 film has a low dopant concentration after the highly doped channel is removed and should be useful for device application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ohmura, Y., Matsushita, Y. and Kashiwagi, M., Jpn. J. Appl. Phys., 21, L152 (1982).CrossRefGoogle Scholar
2 Kunii, Y., Tabe, M. and Kajiyama, M., J. Appl. Phys., 54, 2849 (1983).CrossRefGoogle Scholar
3 Ishiwara, H., Yamamoto, H., Furukawa, S., Tamura, M. and Tokuyama, T., Appl. Phys. Lett., 43, 1028 (1983).CrossRefGoogle Scholar
4 Katoh, T., Sasaki, M., Hirashita, N. and Onoda, H., Extended Abstracts, ECS Meeting, Boston, March, 1986, p. 131.Google Scholar
5 Pai, C. S., Lau, S. S. and Suni, I., Thin Solid Films, 109, 263 (1983).CrossRefGoogle Scholar
6 Yamamoto, H., Ishiwara, H. and Furukawa, S., Appl. Phys. Lett., 46, 268 (1985).CrossRefGoogle Scholar
7 Ishiwara, H., Tamba, A. and Furukawa, S., Appl. Phys. Lett., 48, 773 (1986).CrossRefGoogle Scholar
8 Cseprigi, L., Kennedy, E. F., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys., 49, 3906 (1978).CrossRefGoogle Scholar
9 Bean, J. C. and Sadowski, E. A., J. Vac. Sei. Technol., 20, 137 (1982).CrossRefGoogle Scholar
10 Jenkins, M. W., J. Electrochem. Soc., 124, 757 (1977).CrossRefGoogle Scholar
11 Penumalli, B. R., IEEE Trans. Electron Devices, ED-30, 986 (1983).CrossRefGoogle Scholar
12 Kalbitzer, S., Reinelt, M. and Stolz, W., Proc. of the 4th EC Photovoltaic Solar Energy Conference, Stresa, Stresa, May 1982, p. 1059.CrossRefGoogle Scholar
13 Poate, J. M., Jacobson, D. C., Williams, J. S., Elliman, R. G. and Boerma, D. O., Nucl. Instr. and Method, B19/20, 480 (1987).CrossRefGoogle Scholar
14 Yamamoto, H., Ishiwara, H. and Furukawa, S., Jpn. J. Appl. Phys., 24, 411 (1985).CrossRefGoogle Scholar
15 Yamamoto, H., Ishiwara, H. and Furukawa, S., MRS Symp. Proc., 37, 121 (1985).Google Scholar
16 Roth, J. A. and Olson, G. L., MRS Symp. Proc., 74, 319 (1986).CrossRefGoogle Scholar