Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T20:59:28.908Z Has data issue: false hasContentIssue false

Enhanced Mobility of Organic Field-Effect Transistors with Epitaxially Grown C60 Film by in-situ Heat Treatment of the Organic Dielectric

Published online by Cambridge University Press:  01 February 2011

Th. B. Singh*
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria
N. Marjanovic
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria
G. J. Matt
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria
S. Günes
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria
N. S. Sariciftci
Affiliation:
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria
A. Montaigne Ramil
Affiliation:
Institute of Semiconductor- and Solid State Physics, Johannes Kepler University Linz, Austria
A. Andreev
Affiliation:
Institute of Semiconductor- and Solid State Physics, Johannes Kepler University Linz, Austria
H. Sitter
Affiliation:
Institute of Semiconductor- and Solid State Physics, Johannes Kepler University Linz, Austria
R. Schwödiauer
Affiliation:
Soft Matter Physics, Johannes Kepler University Linz, Austria
S. Bauer
Affiliation:
Soft Matter Physics, Johannes Kepler University Linz, Austria
*
§Corresponding author. e-mail: [email protected]
Get access

Abstract

Electron mobilities were studied as a function of thin-film growth conditions in hot wall epitaxially grown C60 based field-effect transistors. Mobilities in the range of ∼ 0.5 to 6 cm2/Vs are obtained depending on the thin-film morphology arising from the initial growth conditions. Moreover, the field-effect transistor current is determined by the morphology of the film at the interface with the dielectric, while the upper layers are less relevant to the transport. At high electric fields, a non-linear transport has been observed. This effect is assigned to be either because of the dominance of the contact resistance over the channel resistance or because of the gradual move of the Fermi level towards the band edge as more and more empty traps are filled due to charge injection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogers, J. A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, Brian, Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. 98, 4835 (2001).Google Scholar
2 Huitema, H. E. A., Gelinck, G. H., Putten, J. B. P. H. van der, Kuijk, K. E., Hart, C. M., Cantatore, E., Herwig, P. T., Breemen, A. J. J. M. van and Leeuw, D. M. de, Nature 414, 599 (2001).Google Scholar
3 Sheraw, C. D., Zhou, L., Huang, J. R., Gundlach, D. J., Jackson, T. N., Kane, M. G., Hill, I. G., Hammond, M. S., Campi, J., Greening, B. K., Francl, J. and West, J., Appl. Phys. Lett. 80, 1088 (2002).Google Scholar
4 Brown, A. R., Jarret, C. P., Leeuw, D. M. de, Matters, M., Synth. Met. 88, 37 (1997).Google Scholar
5 Crone, B. K., Dodabalapur, A., Sarpeshkar, R., Gelperin, A., Katz, H. E., and Bao, Z., J. Appl. Phys. 91, 10140 (2001).Google Scholar
6 Leew, D. M. De, Gelinck, G. H., Geuns, T. C. T., Veenendaal, E. Van, Cantatore, E. and Huisman, B. H., Int. Electron Device Meeting (IEDM) Tech. Dig. 293 (2002).Google Scholar
7 Baude, P. F., Ender, D. A., Haase, M. A., Kelley, T. W., Muyres, D. V., and Theiss, S. D., Appl. Phys. Lett. 82, 3964 (2003).Google Scholar
8 Klauk, H., Halik, M., Zschieschang, U., Eder, F., Schmid, G., and Dehm, Ch., Appl. Phys. Lett. 82, 4175 (2003).Google Scholar
9 Narayan, K. S. and Kumar, N., Appl. Phys. Lett, 79, 1891 (2001).Google Scholar
10 Schroeder, R., Majewski, L. A. and Grell, M., Adv. Mater. 16, 633 (2004); Th. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer and S. Bauer, Appl. Phys. Lett. 85, 5409 (2004).Google Scholar
11 Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E. and Rogers, J. A., Science 303, 1644 (2004).Google Scholar
12 Lin, Y.-Y., Gundlach, D. J., Nelson, S. F. and Jackson, T. N., IEEE Electron Devices Lett. 18, 606 (1997).Google Scholar
13 Kepler, R. G., Phys. Rev. 119, 1226 (1960).Google Scholar
14 Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A., and Iwasa, Y., Appl. Phys. Lett. 82, 4581 (2003).Google Scholar
15 Singh, Th. B., Marjanović, N., Stadler, P., Auinger, M., Matt, G. J., Günes, S., Sariciftci, N. S., Schwödiauer, R. and Bauer, S., J. Appl. Phys. (in press)Google Scholar
16 Bao, Z., Lovinger, A. J. and Brown, J., J. Am. Chem. Soc. 120, 207 (1998).Google Scholar
17 Katz, H. E., Johnson, J., Lovinger, A. J. and Li, W., J. Am. Chem. Soc. 122, 7787 (2000).Google Scholar
18 Chesterfield, R. J., McKeen, J. C., Newman, Ch. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. and Miller, L. L., J. Appl. Phys. 95, 6396 (2004).Google Scholar
19 Malenfant, P. R. L., Dimitrakopoulos, C. D., Gelorme, J. D., Kosbar, L. L. and Graham, T. O., Appl. Phys. Lett. 80, 2517 (2002).Google Scholar
20 Horowitz, G., Lang, Ph., Mottaghi, M., and Aubin, H., Adv. Funct. Mater. 14, 1069 (2004).Google Scholar
21 Dinelli, F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F. and Leeuw, D. M. de, Phys. Rev. Lett. 92, 116802 (2004).Google Scholar
22 Schwödiauer, R., Neugschwandtner, G. S., Bauer-Gogonea, S., Bauer, S. and Wirges, W., Appl. Phys. Lett. 75, 3998 (1999).Google Scholar
23www.dow.com/cyclotene/Google Scholar
24 Andreev, A., Matt, G., Brabec, C. J., Sitter, H., Badt, D., Seyringer, H. and Sariciftci, N. S. Adv. Mat. 12, 629 (2000).Google Scholar
25 Stifter, D. and Sitter, H., Appl. Phys. Lett. 66, 679 (1995).Google Scholar
26 Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
27 Horowitz, G. and Delannoy, P., J. Appl. Phys. 70, 469 (1991).Google Scholar
28 Koehler, M. and Biaggio, I., Phys. Rev. B., 70, 045314 (2004).Google Scholar
29 Mihailetchi, V. D., Duren, J. K. J. van, Blom, P. W. M., Hummelen, J. C., Janssen, R. A. J., Kroon, J. M., Rispens, M. T., Verhees, W. J. H. and Wienk, M. M., Adv. Func. Mater. 13, 43 (2003)Google Scholar
30 Matt, G. J., Sariciftci, N. S. and Fromherz, T., Appl. Phys. Lett. 84, 1570 (2004).Google Scholar
31 Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Fromherz, T., Rispens, M. T., Sanchez, L. and Hummelen, J. C., Adv. Funct. Mater. 11, 374 (2001).Google Scholar
32 Horowitz, G., private communications.Google Scholar
33 Meijer, E. J., Gelinck, G. H., Veenendaal, E. Van, Huisman, B. H., Leeuw, D. M. De, Klapwijk, T. M., Appl. Phys. Lett., 82, 4576 (2003).Google Scholar
34 Rose, A., Phys. Rev. 97, 1538 (1955).Google Scholar
35 Lampart, M. A., Phys. Rev. 103, 1648 (1956).Google Scholar
36 Kalb, W., Lang, Ph., Mottaghi, M., Aubin, H., Horowitz, G. and Wutting, M., Synth. Met., 146, 279 (2004).Google Scholar