Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:24:26.686Z Has data issue: false hasContentIssue false

Enhanced mobility of hydrogenated MO-LPCVD ZnO contacts for high performances thin film silicon solar cells

Published online by Cambridge University Press:  16 May 2012

L. Ding
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel
M. Benkhaira
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel
S. Nicolay
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel
C. Ballif
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, CH-2000 Neuchâtel
Get access

Abstract

In this contribution, we study the increase in metalorganic-low pressure chemical vapor deposited (MO-LPCVD) ZnO thin films conductivity by hydrogen plasma post-treatment. We show that this improvement is linked to defect passivation at grain boundaries, decreasing the electron traps density and resulting in the almost complete suppression of the electron scattering at grain boundaries. For a 2 μm thick non-intentionally doped ZnO layer, electron mobility reaches after treatment values close to 60 cm2V-1s-1 (corresponding to an increase of 100%), with a carrier density still as low as 3 x1019 cm-3 (+1.5 x1019 cm-3). Such layers have an absorbance below 2-3% in the range of 400 to 1100 nm making them among the most transparent and conductive materials reported so far. In addition, we demonstrate that hydrogen plasma post-treated ZnO layers can be used as front electrode for producing highly transparent and conductive electrodes. Eventually, it is shown that hydrogen plasma treatment can also be used on the complete thin film solar cell stack (back contact and silicon device) to improve the cell performances.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nicolay, S., Faÿ, S. and Ballif, C., Cryst. Growth Des. 9, (11), pp 49574962 (2009)CrossRefGoogle Scholar
Wenas, Wilson W., Akira, Yamada, Kiyoshi, Takahashi, Masahiro, Yoshino, Makoto, Konagai, J. Appl. Phys. 70, 71197123 (1991)CrossRefGoogle Scholar
Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
Steinhauser, J., Faÿ, S., Oliveira, N., Vallat-Sauvain, E., Ballif, C., Appl. Phys. Lett. 90, 142107 (2007)CrossRefGoogle Scholar
Ellmer, K., J. Phys. D: Appl. Phys. 34, 30973108 (2001)CrossRefGoogle Scholar
Van de Walle, C. G., Phys. Rev. Lett. 85, 86 (2000)CrossRefGoogle Scholar
Cai, P. F., You, J. B., Zhang, X. W., Dong, J. J., Yang, X. L., Yin, Z. G., Chen, N. F.; J. Appl. Phys. 105, 083713 (2009)CrossRefGoogle Scholar
Dong, J. J., Zhang, X. W., You, J. B., Cai, P. F., Yin, Z. G., An, Q., Ma, X. B., Jin, P., Wang, Z. G. and Chu, Paul K., Appl. Mater. Interface 2, 6, 17801784 (2010)CrossRefGoogle Scholar
Ding, L., Boccard, M., Bugnon, G., Benkhaira, M., Nicolay, S., Despeisse, M., Meillaud, F. and Ballif, C., Sol. Energy Mater. Sol. Cells 98, pp. 331336 (2012)CrossRefGoogle Scholar
Despeisse, M., Battaglia, C., Boccard, M., Bugnon, G., Charrière, M., Cuony, P., Hänni, S., Löfgren, L., Meillaud, F., Parascandolo, G., Söderström, T. and Ballif, C., Phys. Status Solidi A, 16, (2011)Google Scholar
Beyer, W., Hamelmann, F., Knipp, D., Lennartz, D., Prunici, P., Raykov, A., Stiebig, H., Proc. 25th European Photovoltaic Solar Energy Conference (2010)Google Scholar
Faÿ, S., Feitknecht, L., Schluchter, R., Kroll, U., Vallat-Sauvain, E. and Shah, A., Sol. Energy Mater. Sol. Cells 90, 2960 (2006)CrossRefGoogle Scholar
Boccard, M., Cuony, P., Battaglia, C., Despeisse, M., Ballif, C., Phys. Status Solidi RRL 4(11), 326328 (2010)CrossRefGoogle Scholar
Veprek, S, Iqbal, Z, Kuhne, R O, Capezzuto, P, Sarott, F -A and Gimzewski, J K, J. Phys. C: Solid State Phys. 16, 62416262 (1983)CrossRefGoogle Scholar