Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:50:32.190Z Has data issue: false hasContentIssue false

Enhanced Electroluminescence of CdSe/ZnS Quantum Dot Light–emitting Diodes with Phosphorescent Donors

Published online by Cambridge University Press:  13 September 2011

Yiqiang Zhang
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, U.S.A.
X. A. Cao
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, U.S.A.
Get access

Abstract

We demonstrated the enhancement of electroluminescence (EL) from green CdSe/ZnS QDs in hybrid QD/organic light-emitting diodes (QD-LEDs) by employing blue phosphorescent dyes Bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic) as efficient exciton harvesters and energy transfer donors. Precise control of the concentration of the FIrpic donors doped in a 4,4’-N, N’-dicarbazole-biphenyl (CBP) host and their distance from the QD layer led to complete triplet exciton energy transfer and EL enhancement by a factor of 2.5. The Förster distance between FIrpic molecules and green CdSe/ZnS QDs was determined to be ∼ 8 nm, which is in a good agreement with the value calculated using the Förster model. Our study shows that integrating colloidal QDs with phosphorescent organic dyes provides an effective means for improving the quantum efficiency of QD-based hybrid LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
2. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
3. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
4. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., and Bawendi, M. G., J. Phys. Chem. B 101, 9463 (1997).Google Scholar
5. Alivisatos, A. P., J. Phys. Chem. 100, 13226 (1996).Google Scholar
6. Qu, L. and Peng, X., X. J. Am. Chem. Soc. 124, 2049 (2002).Google Scholar
7. Talapin, D. V., Lee, J., Kovalenko, M. V., and Shevchenko, E. V., Chem. Rev. 110, 389 (2010).Google Scholar
8. Coe-Sullivan, S., Woo, W.-K., Bawendi, M. G., and Bulovic, V., Nature 420, 800 (2002).Google Scholar
9. Coe-Sullivan, S., Woo, W.-K., Steckel, J. S., Bawendi, M. G., and Bulovic, V., Org. Electron. 4, 123 (2003).Google Scholar
10. Meng, H. and Herron, N., in Organic Light-Emitting Materials and Devices (Taylor & Francis, 2007), edited by Li, Z. and Meng, H., Ch. 3.Google Scholar
11. Anikeeva, P. O., Madigan, C. F., Coe-Sullivan, S., Steckel, J. S., Bawendi, M. G., and Bulovic, V., Chem. Phys. Lett. 424, 120 (2006).Google Scholar
12. Zhang, Y. Q. and Cao, X. A., Appl. Phys. Lett. 97, 253115 (2010).Google Scholar
13. Matsusue, N., Suzuki, Y., and Naito, H., Jpn. J. Appl. Phys., Part 1 44, 3691 (2005).Google Scholar
14. Förster, Th., Ann. Phys. 437, 55(1948).Google Scholar
15. Anikeeva, P. O., Madigan, C. F., Halpert, J. E., Bawendi, M. G., and Bulović, V., Phys. Rev. B. 78, 085434 (2008).Google Scholar
16. Holmes, R. J., Forrest, S. R., Tung, Y.-J., Kwong, R. C., Brown, J., Garon, J. S., and Thompson, M. E., Appl. Phys. Lett. 82, 2422 (2003).Google Scholar
17. Coe-Sullivan, S., Steckel, J. S., Woo, W.-K., Bawendi, M. G., and Bulovi, V., Adv. Function Mater. 15, 1117 (2005).Google Scholar