Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T11:35:22.733Z Has data issue: false hasContentIssue false

Enhanced 1.54 μm Luminescence in Er-doped ZnO Nanoparticle Films via Indirect Excitation

Published online by Cambridge University Press:  01 February 2011

Zhengda Pan
Affiliation:
[email protected], Fisk University, Nashville, Tennessee, United States
S. H. Morgan
Affiliation:
[email protected], Fisk University, Nashville, Tennessee, United States
A. Ueda
Affiliation:
[email protected], Fisk University, Nashville, Tennessee, United States
R. Aga Jr.
Affiliation:
[email protected], Fisk University, Nashville, Tennessee, United States
H. Y. Xu
Affiliation:
[email protected], The Chinese University of Hong Kong, Hong Kong, China
S. K. Hark
Affiliation:
[email protected], The Chinese University of Hong Kong, Hong Kong, China
R. Mu
Affiliation:
[email protected], Fisk University, Nashville, Tennessee, United States
Get access

Abstract

Photoluminescence (PL) of Er-doped ZnO nanoparticle films was studied. The films were fabricated using e-beam evaporation. The films were subsequently annealed at 700 °C in air for an hour. The atomic force microscopy (AFM) image revealed nano-sized ZnO particles. PL was measured at two excitation wavelengths, 325 and 514.5 nm. The 325 nm is used for exciting the ZnO host semiconductor and 514.5 nm is used for directly exciting Er3+ ions in the ZnO films. Er3+ luminescence was observed from the annealed film using either indirect (325 nm) or direct (514.5 nm) excitations. It has been found that the indirect excitation is about 40 times more efficient than the direct excitation in producing 1.54 μm PL. With indirect excitation, the Er3+ luminescence observed is attributed to energy transfer from ZnO host to the Er3+ ions doped. Energy transfer from e-h pairs resulting from ZnO host excitation may provide efficient routes for exciting Er3+ ions inside nano-crystalline particles of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polman, A. and van Veggel, F. C. J. M., J. Opt. Soc. Am. B 21, 871 (2004).Google Scholar
2. Pan, Z., Morgan, S. H., Ueda, A., Aga, R. Jr., Steigerwald, A., and Mu, R., J. Phys.: Condens. Matter 19, 266217 (2007).Google Scholar
3. Pan, Z., Ueda, A., Morgan, S. H., and Mu, R., J. Rare Earths 24, 699 (2006).Google Scholar
4. Ishii, M., Komuro, S., Morikawa, T., and Aoyagi, Y., J. Appl. Phys. 89, 3679 (2001).Google Scholar
5. Brovelli, S., Chiodini, A., Lauria, A., Meinardi, F., and Paleari, A., Phys. Rev. B 73 073406 (2006).Google Scholar
6. Gallis, S., Huang, M., and Kaloyeros, A. E., Appl. Phys. Lett. 90 161914 (2007).Google Scholar
7. Pan, Z., Morgan, S. H., Ueda, A., Aga, R. Jr., Steigerwald, A., and Mu, R., MRS Sym. Proc. 1035, L0812 (2008).Google Scholar
8. Ye, Z., Yuan, G., Li, B., Zhu, L., Zhao, B. and Huang, J., Mater. Chem. Phys. 93 170 (2005).Google Scholar
9. Liu, H., Lysenko, S., Rua, A., Vikhnin, V., Vasquez, O., Fernandez, F. E., J. Lumin. 119–120 388 (2006).Google Scholar
10. Pan, Z., Morgan, S. H., Loper, A., King, V., Long, B. H., and Collins, W. E., J. Appl. Phys. 77, 4688 (1995).Google Scholar
11. Sadhu, S., Sen, T., and Patra, A., Chem. Phys. Lett. 440 121 (2007).Google Scholar
12. Liu, Y., Luo, W., Li, R., Liu, G., Antonio, M. R., and Chen, X., J. Phys. Chem C 112 686 (2008).Google Scholar