Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T14:06:30.055Z Has data issue: false hasContentIssue false

Engineering and Characterization of Resonant Optical Antennas

Published online by Cambridge University Press:  17 April 2019

Matthias D. Wissert
Affiliation:
Lichttechnisches Institut (LTI), DFG Heisenberg Group ‘Nanoscale Science’, Karlsruher Institut fuer Technologie, Karlsruhe, Germany
Andreas W. Schell
Affiliation:
Lichttechnisches Institut (LTI), DFG Heisenberg Group ‘Nanoscale Science’, Karlsruher Institut fuer Technologie, Karlsruhe, Germany
Konstantin S. Ilin
Affiliation:
Institut für Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Siegel
Affiliation:
Institut für Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Karlsruhe, Germany
U. Lemmer
Affiliation:
Lichttechnisches Institut (LTI), Karlsruher Institut fuer Technologie, Karlsruhe, Germany
Hans-Juergen Eisler
Affiliation:
Lichttechnisches Institut (LTI), DFG Heisenberg Group ‘Nanoscale Science’, Karlsruher Institut fuer Technologie, Karlsruhe, Germany
Get access

Abstract

Resonant optical dipole antennas, consisting either of two arms coupled by a small gap or of a single, uncoupled arm only, are fabricated by the application of electron beam lithography and gold evaporation. Using dark-field microscopy, scattering spectra of structures with varied antenna arm length and varied gap size are obtained. The results show not only a spectral redshift for coupled structures compared to single arm structures, but also that the far-field scattering intensity is significantly higher for two arm structures with gap. In addition to the dipole structures, first fabrication results on quadrupole antennas and split-ring antennas are presented, offering novel pathways for an enhancement of the optical response function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mühlschlegel, P., Eisler, H.-J., Martin, O.J.F., Hecht, B., and Pohl, D.W., Science 308, 1607 (2005).Google Scholar
2. Sundaramurthy, A., Crozier, K.B., Kino, G.S., Fromm, D.P., Schuck, P.J., and Moerner, W.E., Phys. Rev. B 72, 165409 (2005).Google Scholar
3. Grober, R., Schoellkopf, R., and Prober, D., Appl. Phys. Lett. 70, 1354 (1997)Google Scholar
4. Wissert, M.D., Schell, A.W., Ilin, K.S., Siegel, M., and Eisler, H.-J., Nanotechnology 20, 425203 (2009).Google Scholar
5. Muskens, O.L., Giannini, V., Sánchez, J.A., and Gómez-Rivas, J., Opt. Express 15, 17736 (2007).Google Scholar
6. Imura, K., Nagahara, T., and Okamoto, H., J. Phys. Chem. B 109, 13214 (2005).Google Scholar
7. Ghenuche, P., Cherukulappurath, S., Taminiau, T., van Hulst, N., and Quidant, R., Phys. Rev. Lett. 101, 116805 (2008).Google Scholar
8. Schnell, M., García-Etxarri, A., Huber, A.J., Crozier, K., Aizpurua, J., and Hillenbrand, R., Nature Photon. 3, 287 (2009).Google Scholar
9. Olmon, R., Krenz, P., Jones, A., Boreman, G., and Raschke, M., Opt. Express 16, 20295 (2008).Google Scholar
10. Novotny, L. and Hecht, B., Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006), p. 208.Google Scholar
11. Novotny, L., Phys. Rev. Lett. 98, 266802 (2007).Google Scholar
12. Enoch, S., Quidant, R., and Badenes, G., Opt. Express 12, 3422 (2004).Google Scholar
13. Righini, M., Volpe, G., Girard, C., Petrov, D., and Quidant, R., Phys. Rev. Lett. 100, 168804 (2008).Google Scholar
14. Tang, L., Kocabas, S.E., Latif, S., Okyay, A.K., Ly-Gagnon, D.-S., Saraswat, K.C., and Miller, D.A.B., Nature Photon. 70, 226 (2008).Google Scholar
15. Biagioni, P., Savoini, M., Huang, J.-S., Duo, L., Finazzi, M., and Hecht, B., Phys. Rev. B 80, 153409 (2009).Google Scholar