Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T04:05:19.518Z Has data issue: false hasContentIssue false

Energy Level Alignment and Exciton Binding Energies Using Model Interfaces between Metals and Evaporable Organic Electroluminescent Materials

Published online by Cambridge University Press:  21 March 2011

Santos F. Alvarado
Affiliation:
IBM Research, Zurich Research Laboratory 8803 Rüschlikon, Switzerland
Walter Rieβ
Affiliation:
IBM Research, Zurich Research Laboratory 8803 Rüschlikon, Switzerland
Get access

Abstract

We report on a scanning probe spectroscopy study of the electronic properties of model organic/metal interfaces. The experiments allow us to determine parameters that are critical in charge carrier injection and transport, as are the energy gap between positive and negative polaronic states and the height of the barrier for charge carrier injection at metal/organic interfaces. In combination with optical absorption measurements, we gauge the exciton binding energy, a parameter determining energy transport and electroluminescence efficiency. The study was performed on thin films of tris(8-hydroxyquinolato)aluminum (Alq3) deposited on clean and LiF-covered Au(111), and on N,N'-di(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB) on Ni(111) and substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sugiyama, K., Yoshimura, D., Miyamae, T., Miyazaki, T., Ishii, H., Ouchi, Y., and Seki, K., J. Appl. Phys. 83, 4928 (1998); H. Ishii and K. Seki, IEEE Trans. Electron Dev. 44, 1295 (1997); K. Seki, E. Ito, and I. Ishii, Synthetic Metals 91, 137 (1997).Google Scholar
2. Rajagopal, A., Wu, C. I., and Kahn, A., J. Appl. Phys. 83, 2649 (1998); I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).Google Scholar
3. Hosokawa, C., Higashi, H., Nakamura, H., and Kusumoto, T., Appl. Phys. Lett. 67, 3853 (1995).Google Scholar
4. Matsumura, M. and Akai, T., Jpn. J. Appl. Phys. 35, 5357 (1996).Google Scholar
5. Probst, M. and Haight, R., Appl. Phys. Lett. 71, 202 (1997).Google Scholar
6. Schmidt, A., Anderson, M. L., and Armstrong, N. R., J. Appl. Phys. 78, 5619 (1995).Google Scholar
7. Alvarado, S. F., Rossi, L., Müller, P., Seidler, P.F., and Riess, W., IBM J. Res. Develop. 45, 89 (2001).Google Scholar
8. Alvarado, S. F., Seidler, P. F., Lidzey, D. G., and Bradley, D. D. C., Phys. Rev. Lett. 81, 1082 (1998).Google Scholar
9. Alvarado, S. F., Libioulle, L., and Seidler, P. F., Synthetic Metals 91, 69 (1997).Google Scholar
10. Jabbour, G. E., Kawabe, Y., Shaheen, S. E., Wang, J. F., Morrell, M. M., Kippelen, B., and Peyghambarian, N., Appl. Phys. Lett. 71, 1762 (1997).Google Scholar
11. Le, Q. T., Yan, L., Goa, Y., Mason, M. G., Giesen, D. J., and Tang, C. W., J. Appl. Phys. 87, 375 (2000) and references therein.Google Scholar
12. Mori, T., Fujikawa, H., Tokito, S., and Taga, Y., Appl. Phys. Lett. 73, 2763 (1998).Google Scholar
13. Yoshimura, Y., Yokoyama, T., Ishii, H., Ouchi, Y., Hasegawa, S., and Seki, K., Synthetic Metals 102, 1145 (1999).Google Scholar
14. Mason, M. G., Tang, C. W., Hung, L.-S., Raychaudhuri, P., Madathil, J., Giesen, D. J., Yan, L., Le, Q. T., Gao, Y., Lee, S.-T., Liao, L. S., Cheng, L. F., Salaneck, W. R., Santos, D. A. dos, and Brédas, J. L., J. Appl. Phys. 89, 2756 (2001).Google Scholar
15. Lee, S. T., Hou, X. Y., Mason, M. G., and Tang, C. W., Appl. Phys. Lett. 72, 1593 (1998).Google Scholar
16. Schlaf, R., Parkinson, B. A., Lee, P. A., Nebesny, K. W., Jabbour, G., Kippelen, B., Peyghambarian, N., and Armstrong, N. R., J. Appl. Phys. 84, 6729 (1998).Google Scholar
17. Curioni, A. and Andreoni, W., IBM J. Res. Develop. 45, 101 (2001).Google Scholar
18. Matsumura, M. and Jinde, Y., Appl. Phys. Lett. 73, 2872 (1998).Google Scholar
19. Matsumura, M., Furukawa, K., and Jinde, Y., Thin Solid Films 331, 96 (1998).Google Scholar
20. Heil, H., Steiger, J., Karg, S., Gastel, M., Ortner, H., and Seggern, H. von, J. Appl. Phys. 89, 420 (2001).Google Scholar
21. Fujikawa, H., Mori, T., Noda, K., Ishii, M., Tokito, S., and Taga, Y., J. Luminescence 87–89, 1177 (2000).Google Scholar
22. Michaelson, H. B., J. Appl. Phys. 48, 4729 (1977).Google Scholar
23. Lee, S. T., Wang, Y. M., Hou, X. Y., and Tang, C. W., Appl. Phys. Lett. 74, 670 (1999).Google Scholar
24. Slyke, S. V. van et al. , Appl. Phys. Lett. 69, 2160 (1996).Google Scholar
25. Hung, L. S., Tang, C. W., and Mason, M. G., Appl. Phys. Lett. 70, 152 (1997).Google Scholar
26. Conwell, E. M., Synthetic Metals 83, 101 (1996).Google Scholar
27. Curioni, A. and Andreoni, W., paper in preparation.Google Scholar