Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:27:20.705Z Has data issue: false hasContentIssue false

Energetic Decomposition of High-Nitrogen Metal Complexes and the Formation of Low-Density Nano-Structured Metal Monoliths

Published online by Cambridge University Press:  26 February 2011

Bryce C Tappan
Affiliation:
[email protected], Los Alamos National Laboratory, MS C920, Los Alamos, NM, 87545, United States, 505-667-0533
My Hang Huynh
Affiliation:
[email protected], Los Alamos National Laboratory, United States
Michael A. Hiskey
Affiliation:
[email protected], Los Alamos National Laboratory, United States
David E. Chavez
Affiliation:
[email protected], Los Alamos National Laboratory, United States
Erik P. Luther
Affiliation:
[email protected], Los Alamos National Laboratory, United States
Joseph T. Mang
Affiliation:
[email protected], Los Alamos National Laboratory, United States
Steven F. Son
Affiliation:
[email protected], Los Alamos National Laboratory, United States
Get access

Abstract

Metal complexes of the energetic high-nitrogen ligand, bistetrazole amine (BTA) were ignited in inert environments and their decomposition characteristics were determined. These molecules were found to have the unique properties of a comparatively slow burning rate with very little pressure dependency, unlike most energetic, metal-containing molecules which tend to detonate, rather than burn steadily. This process resulted in unprecedented ultra-low-density, nano-structured, transition metal monoliths, useful as a self-propagating combustion synthesis technique. The resulting nanostructured metal monolithic foams formed in the post flame-front dynamic assembly have remarkably low densities down to 0.011 g cm-3 and extremely high surface areas as high as 270 m2 g-1. In this work we discuss primary the production of iron monoliths, however have produced monolithic nano-porous metal foams via this method with cobalt, copper and silver metals as well. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wasley, H.N.G., Metal Foams: A Design Guide; Butterworth-Heinemann: Woburn, MA, (2000)Google Scholar
2. Kistler, S.S., Nature,, 127, 741 (1931)Google Scholar
3. Kistler, S.S., J. Phys. Chem, 36, 52 ( 1932)Google Scholar
4. Suh, D.J., Park, T.J., Chem. Mater., 8, 509 (1996)Google Scholar
5. Gibson, L., Annu. Rev. Mater. Sci., 30, 191 (2000)Google Scholar
6. Kanahashi, H., Mukai, T., Yamada, Y., Shimojima, K., Mabuchi, M., Nieh, T.G., Higashi, K., Mater. Sci. Eng., A280, 349. (2000)Google Scholar
7. Walsh, D., Arcelli, L., Toshiyuki, I., Tanaka, J, Mann, S., Nature Mater., 2, 386 (2003)Google Scholar
8. Song, Y., Yang, Y., Medforth, C.J., Pereira, E., Singh, A.K., Xu, H., Jiang, Y., Brinker, C.J., van Swol, F., J.A. Shelnutt., J. Am. Chem. Soc., 126, 635 (2004)Google Scholar
9. Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.L., Satcher, J.H. J. Appl. Physic., 97, 1 (2005)Google Scholar
10. Sherman, A.J., Williams, B.E., Delarosa, M.J., Laferla, R., (Mater. Res. Soc. Symp. Proc. 207, Boston, MA, 1991) pp. 141.Google Scholar
11. Norris, W., J. Org. Chem., 29, 650 (1964)Google Scholar
12. Highsmith, T.K.; Hajik, R.M.; Wardle, R.B.; Lund, G.K.; Blau, R.J. U.S. Patent 5,468,866, (1995)Google Scholar
13. Naud, D.L., Hiskey, M.A., U.S. Patent 6,570,022, (2003)Google Scholar
14. Chavez, D.E.; Hiskey, M.A.; Naud, D. L. J. Pyrotech. 10, 17 (1999)Google Scholar
15. Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Son., S.F., & Oschwald, D.M. US patent (2005) (submitted)Google Scholar
16. Persson, P.A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering CRC Press: Boca Raton, FL, 1994Google Scholar
17. Beaucage, G., J. Appl. Crystallogr., 28, 717 (1995)Google Scholar
18. Evans, A.G., Hsueh, C.H., J. Am. Ceram. Soc., 69, 444 (1986)Google Scholar