Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:10:00.955Z Has data issue: false hasContentIssue false

The Enchanting Properties of Oxygen Atoms in Silicon

Published online by Cambridge University Press:  26 February 2011

M. Needels
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
J.D. Joannopoulos
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Y. BAR-YAM
Affiliation:
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
S.T. Pantelides
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
R.H. WOLFE
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Extract

In this paper we will present several new theoretical results on the properties of oxygen atoms in bulk crystalline silicon. Specifically, these properties will include (1) oxygen migration - where we will suggest that the conventional adiabatic-barrier model for oxygen migration may not be valid for this system; (2) oxygen catalysis - where we will demonstrate that certain oxygen configurations can act as “catalysts” to reactions that form silicon broken bond defects; and (3) oxygen aggregation - where we will introduce a new mechanism for the initial stages of aggregation and oxidation within the bulk of crystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
2. Kohn, W. and Sham, L.J., Phys. Rev. 140 Al133 (1965).Google Scholar
3. Phillips, J.C., Phys. Rev. 112, 685 (1958).CrossRefGoogle Scholar
4. Heine, V. and Cohen, M.L., Solid State Physics Vol. 24 (1970).Google Scholar
5. Car, R. and Parrinello, M., Phys. Rev.Lett. 55, 2471 (1985).Google Scholar
6. Teter, M.P., Payne, M.C. and Allan, D.C., Phys. Rev. B 40, 12255 (1989).CrossRefGoogle Scholar
7. Payne, M.C., Joannopoulos, J.D., Allan, D.C., Teter, M.P. and Vanderbilt, D.H., Phys. Rev. Lett. 56, 2656 (1986).Google Scholar
8. Williams, A. and Soler, J., Bull. Am. Phys. Soc. 32 562 (1987).Google Scholar
9. Stich, I., Car, R., Parrinello, M. and Baroni, S., Phys. Rev. B 39, 4997 (1989).Google Scholar
10. Gillan, M.J., J. Phys: Condensed Matter 1, 689 (1989).Google Scholar
11. Payne, M.C., Teter, M.P., Allan, D.C. and Joannopoulos, J.D., Rev. Mod. Phys. Submitted (1991).Google Scholar
12. Wolfe, R.H., Needels, M. and Joannopoulos, J.D., IBM Technical Report RC 15719 (#69857) (1990).Google Scholar
13. Keating, P.N., Phys. Rev. 145, 637 (1966).Google Scholar
14. Baldereschi, A., Phys. Rev. B 7, 5212 (1973).Google Scholar
15. Joannopoulos, J.D. and Cohen, M.L., J. Phys. C. 6, 1572 (1973).Google Scholar
16. Chadi, D.J. and Cohen, M.L., Phys. Rev. B 8, 5747 (1973).Google Scholar
17. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
18. Allan, D.C. and Teter, M.P., Phys. Rev. Lett. 59, 1136 (1987).Google Scholar
19. Bar-Yam, Y., Pantelides, S.T. and Joannopoulos, J.D., Phys. Rev. B 39, 3396 (1989).CrossRefGoogle Scholar
20. Ceperly, D.M. and Alder, B.J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
21. Perdew, J. and Zunger, A., Phys. Rev. B. 23, 5048 (1984)Google Scholar
22. Rappe, A., Bash, P. and Joannopoulos, J.D., unpublished (1990).Google Scholar
23. Jones, R.O., Phys. Rev.Lett. 52, 2002 (1984);Google Scholar
23a. Painter, G.S. and Averill, F.W., Phys. Rev. B 26, 1781 (1982).Google Scholar
24. Corbett, J.W., McDonald, R.S., and Watkins, G.P., J. Phys. Chem. Solids 25, 873 (1964).CrossRefGoogle Scholar
25. Martinez, E., Plans, J. and Yndurain, F., Phys. Rev. B 35, 8043 (1987).Google Scholar
26. Saito, M. and Oshiyama, A., Phys. Rev. B 38, 10711 (1988).Google Scholar
27. Snyder, L.C. and Corbett, J.W., MRS Symp. 59, 207 (1986);CrossRefGoogle Scholar
27a. 104, 179 (1988).Google Scholar
28. Kelly, P.J., in Mat. Scj. Forum 38–41, 269 (1989).Google Scholar
29. Mikkelsen, J.C. Jr., Appl. Phys. Lett. 40, 336 (1982).Google Scholar
30. -Tong Lee, S. and Fellinger, P., Appl. Phys. Lett. 49, 1793 (1986).Google Scholar
31. Gösele, U. and Tan, T.Y., Appl. Phys. A 28, 79 (1982).Google Scholar
32. Newman, R.C., in Mat. Res. Soc. Symp. Proc., Vol 104, 1988, pp. 2535.Google Scholar
33. Benton, J.L., Kimmerling, L.C., and Stavola, M., Physica 116B, 271 (1983).Google Scholar
34. Stavola, M., Patel, J.R., Kimmerling, L.C., and Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983).Google Scholar
35. Tipping, A.K., Newman, R.C., Newton, D.C., and Tucker, J.H. in “Defects in Semiconductors,” edited by van, H.J. Bardelen, pp. 887892.Google Scholar
36. Buda, F., Chiarotti, G.L, Car, R. and Parinello, M., Phys. Rev. Lett. 63, 294 (1989).CrossRefGoogle Scholar
37. Blochl, P.E., Van de Walle, C.G. and Pantelides, S.T., Phys. Rev,. Lett. 64, 1401 (1990).CrossRefGoogle Scholar
38. Needels, M., Joannopoulos, J.D., Bar-Yam, Y. and Pantelides, S.T., Phys. Rev. B (1990), in press.Google Scholar