Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:46:59.608Z Has data issue: false hasContentIssue false

Encapsulation of Magnetic Particles in Metallic Hollow Nanospheres

Published online by Cambridge University Press:  17 March 2011

M. Toprak
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
D. K. Kim
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
M. Mikhailova
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Y. Zhang
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Y. K. Jeong
Affiliation:
KICET (Korea Institute of Ceramic Engineering and Technology) 233-5, Gasan-Dong, Geumcheon-Gu, Seoul 153-801, Korea
M. Muhammed
Affiliation:
Materials Chemistry Division, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Get access

Abstract

Novel metallic capsules containing magnetite with given size in the sub-micron range have been produced. These nanocapsules are prepared in several steps through a colloidal templating approach. The first step is the synthesis of size-selected SiO2 nanospheres. The second step is coating the SiO2nanospheres by electroless deposition with gold, in order to form a porous gold shell around the silica. Electroless deposition is controlled by the concentration of gold in the coating solution. Subsequently, the core (SiO2) was removed to obtain gold capsules. The final step is the inclusion of magnetite nanoparticles inside these nanocapsules and recoating the capsules with gold in order to have continuous encapsulation. The nanocapsule and core-shell structure have been characterized by TEM and DSC

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caruso, F., Adv. Mater. 13, 11 (2001).Google Scholar
2. Davies, R., Schurr, G.A., Meenan, P., Nelson, R. D., Bergna, H. E., Meenan, P., Brevett, C. A. S., Goldbaum, R. H., Adv. Mater. 10, 1264 (1998).Google Scholar
3. Leff, D.V., Brandt, L., Heath, J.R., Langmuir 12, 4723 (1996).Google Scholar
4. Oldenburg, S. J., Averitt, R.D., Westscott, S.L., Halas, N. J., Chem. Phys. Lett. 288, 243 (1998).Google Scholar
5. Andres, R. P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C. P., Mahoney, W. J., Osifchin, R. J., Science 273, 1690 (1996).Google Scholar
6. Westcott, S. L., Oldenburg, S. J., Lee, T.R., Halas, N. J., Langmuir 14, 5396 (1998).Google Scholar
7. Goia, D.V., Matijevic, E., New J. Chem., 1203 (1998).Google Scholar
8. Caruso, F., Susha, A. S., Giersig, M., Möhwald, H., Adv. Mater. 11, 950 (1999).Google Scholar
9. Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Möhwald, H., Eychmüller, A., Weller, H., Adv. Mater. 12, 333 (2000).Google Scholar
10. Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
11. Badley, R.D., Ford, W.T., McEnroe, F. J., Assink, R. A., Langmuir 6, 792 (1990).Google Scholar
12. Blaaderen, A. van, Vrij, A., J.Colloid Interface Sci. 156, 1 (1993).Google Scholar
13. Waddell, T.G., Leyden, D. E., DeBello, M. T., J Am. Chem. Soc. 103, 5303 (1981).Google Scholar
14. Grabar, K.C., Allison, K.J., Baker, B.E. et al., Langmuir 12, 2353 (1996).Google Scholar