Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T15:59:07.519Z Has data issue: false hasContentIssue false

Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures

Published online by Cambridge University Press:  29 August 2014

E. Velázquez Lozada*
Affiliation:
SEPI – ESIME – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.,
T. Torchynska
Affiliation:
ESFM – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.
G. Camacho González
Affiliation:
ESIME – INSTITUTO POLITECNICO NACIONAL, México D. F. 07738, México.
Get access

Abstract

Scanning electronic microscopy (SEM), X ray diffraction (XRD) and photoluminescence (PL) have been applied to the study of structural and optical properties of ZnO nanocrystals prepared by the ultrasonic spray pyrolysis (USP) at different temperatures. The variation of temperatures and times at the growth of ZnO films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO nanocrystals (NCs), as well as to vary their photoluminescence spectra. The study has revealed three types of PL bands in ZnO NCs: defect related emission, the near-band-edge (NBE) PL, related to the LO phonon replica of free exciton (FE) recombination, and its second-order diffraction peaks. The PL bands, related to the LO phonon replica of FE, and its second-order diffraction in the room temperature Pl spectrum testify on the high quality of ZnO films prepared by the USP technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater. Sci. 50, 293 (2005).CrossRefGoogle Scholar
Koch, M.H., Timbrell, P.Y., Lamb, R.N., Semicond. Sci. Technol. 10, 1523 (1995).CrossRefGoogle Scholar
Vanheusden, K., Seager, C.H., Wareen, W.L., Tallant, D.R., Caruso, J., Hampden-Smith, M.J., Kodas, T.T., J. Lumin. 75, 11 (1997)CrossRefGoogle Scholar
Yang, Z.K., Yu, P., Wong, G.L., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y., Solid State Commun. 103, 459 (1997).Google Scholar
Alvi, N.H., Usman Ali, S.M., Hussain, S., Nur, O. and Willander Scripta, M. Materialia 64, 697 (2011).Google Scholar
Huang, M.H., Mao, S., Feick, H., Science 292, 1897 (2001).CrossRefGoogle Scholar
Scheer, R., Walter, T., Schock, H.W., Fearheiley, M.L., Lewerenz, H.J., Appl. Phys. Lett. 63, 3294 (1993).CrossRefGoogle Scholar
Chen, Y., Baghall, D.M., Koh, H., Park, K., Hiraga, K., Zhu, Z., Yao, T., J. Appl. Phys. 84, 3912 (1998).CrossRefGoogle Scholar
Li, Y.B., Bando, Y., Golberg, D., Appl. Phys. Lett. 84, 3603 (2004).CrossRefGoogle Scholar
Ding, J., McAvoy, T.J., Cavicchi, R.E., Semancik, S., Sens. Actuat. B 77, 597 (2001).CrossRefGoogle Scholar
Dybic, M., Ostapenko, S., Torchynska, T.V., Velazquez Lozada, E., Appl. Phys. Lett. 84(25), 5165 (2004)CrossRefGoogle Scholar
Torchynska, T. V., Diaz Cano, A.I., Dybic, M., Ostapenko, S., Mynbaeva, M., Physica B, Condensed Matter, 376377, 367 (2006)CrossRefGoogle Scholar
PDF2 XRD database, card no. 36–1451.Google Scholar
Djuris, A. B., Ng, A.M.C., Chen, X.Y.. Progress in Quantum Electronics 34. 191259 (2010).CrossRefGoogle Scholar
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. Chem. Solid. 43, 475479 (1982).Google Scholar
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., J. Phys. C. Solid St.Phys. 13, 29752982 (1980).CrossRefGoogle Scholar
Korsunskaya, N.E., Markevich, I.V., Torchinskaya, T.V. and Sheinkman, M.K., phys. stat. sol (a), 60, 565572 (1980).CrossRefGoogle Scholar
Reshchikova, M.A., Morkoc, H., Nemeth, B., Nause, J., Xie, J., Hertog, B., Osinsky, A., Physica B, Condensed Matter, 401402, 358361 (2007).CrossRefGoogle Scholar
Patra, M.K., Manzoor, K., Manoth, M., Vadera, S.P., Kumar, N., Lumin, J.. 128(2) 267272 (2008).CrossRefGoogle Scholar
Zhang, D.H., Xue, Z.Y., Wang, Q.P., J. Phys. D: Appl. Phys. 35(21) 28372840 (2002).CrossRefGoogle Scholar
Djurišic, A.B., Choy, W.C.H., Roy, V.A.L., Leung, Y.H., Kwong, C.Y.. Cheah, K.W., Gundu Rao, T.K., Chan, W.K., Lui, H.F., Surya, C., Adv. Funct. Mater. 14 856864 (2004).CrossRefGoogle Scholar
Liu, X., Wu, X., Cao, H., Chang, R.P.H., J. Appl. Phys. 95(6) 31413147 (2004).CrossRefGoogle Scholar
Qiu, J., Li, X., He, W., Park, S.-J., Kim, H.-K., Hwang, Y.-H., Lee, J.-H., Kim, Y.-D., Nanotechnology 20 155603 (2009).CrossRefGoogle Scholar
Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar