Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:02:49.133Z Has data issue: false hasContentIssue false

Emerging Technologies and Opportunities Based on the Magneto-Electric Effect in Multiferroic Composites

Published online by Cambridge University Press:  31 January 2011

Marian Vopsaroiu
Affiliation:
[email protected], National Physical Laboratory, Hampton Road, Office F9/A2, Teddington, Middlesex, TW11 0LW, United Kingdom, +44 (0)20 8943 8603
John Blackburn
Affiliation:
[email protected], National Physical Laboratory, Teddington, United Kingdom
Markys G. Cain
Affiliation:
[email protected], National Physical Laboratory, Teddington, United Kingdom
Get access

Abstract

Multiferroic materials are recognized today as one of the new emerging technologies with huge potential for both academic research and commercial developments. Multiferroic composites are in particular more attractive for studies due to their enhanced properties, especially at room temperature, in comparison to the single-phase multiferroics. In this paper, we examine some of the theoretical aspects regarding one type of multiferroic composites (laminated structures) and we discuss one of the many possible applications of these exciting structures. We highlight the main advantages composite systems have over single-phase multiferroics and the similarities that exist between them.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dong, S. X. Zhai, J. Y. Bai, F. Li, J. F. and Viehland, D. Appl. Phys. Lett. 87, 062502 (2005)Google Scholar
[2] Dong, S. X. Zhai, J. Li, J.-F., and Viehland, D. Appl. Phys. Lett. 88, 082907 (2006)Google Scholar
[3] Dong, S. X. Bai, J. G. Zhai, J. Y. Li, J. F. Lu, G. Q. Viehland, D. Zhang, S. J. and Shrout, T. R., Appl. Phys. Lett. 86, 182506 (2005)Google Scholar
[4] Dong, S. X. Li, J. F. and Viehland, D. Appl. Phys. Lett. 84, 4188 (2004)Google Scholar
[5] Shastry, S. Srinivasan, G. Bichurin, M. I. Petrov, V. M. Tatarenko, A. S. Phys. Rev. B 70, 064416 (2004)Google Scholar
[6] Fetisov, Y. K. and Srinivasan, G. Appl. Phys. Lett. 88, 143503 (2006)Google Scholar
[7] Huang, Z. J. Appl. Phys. 100, 114104 (2006)Google Scholar
[8] Gajek, M. Bibes, M. Fusil, S. Bouzehouane, K. Fontcuberta, J. Barthelemy, A. Fert, A. Nature Materials, 6 (2007) 296302 Google Scholar
[9] Curie, P. 1894 J. Physique 3 393 Google Scholar
[10] Astrov, D.N. J. Exxp. Theoret. Phys. (U.S.S.R) 38, 948 (1960)Google Scholar
[11] Rado, G.T. Folen, V.J. Phys. Rev. Lett. 7 (1961) 310 Google Scholar
[12] Folen, V.J. Rado, G.T. Stader, E.W. Phys. Rev. Lett. 6 (1961) 607 Google Scholar
[13] Ramesh, R. Spaldin, N.A. Nature Materials 6 (2007) 21 Google Scholar
[14] Laletsin, U. Padubnaya, N. Srinivasan, G. Devreugd, C.P. Appl. Phys. A 78 (2004) 33 Google Scholar
[15] McGuire, T.R. Scott, E.J. Grannis, F.H. Phys. Rev. 102 (1956) 1000 Google Scholar
[16] Rivera, J.P. Ferroelectrics, vol 161 (1994) 165 Google Scholar
[17] Rado, G.T. Phys. Rev. Lett. 13 (1964) 335 Google Scholar
[18] Rivera, J.P. Ferroelectrics, vol 161 (1993) 147 Google Scholar
[19] Rado, G.T. Ferrari, J.M. Maisch, W.G. Phys. Rev. B 29 4041 Google Scholar
[20] Krichevtsov, B.B. Pavlov, V.V. Pisarev, R.V. JETP Lett. 49 (1989) 535 Google Scholar
[21] Wang, J. Neaton, J.B. Zheng, H. Nagarajan, V. Ogale, S.B. Liu, B. Viehland, D. Vaithyanathan, V., Schlom, D.G. Waghmare, U.V. Spaldin, N.A. Rabe, K.M. Wuttig, M. Ramesh, R., Science vol 299 (2003) 1719 Google Scholar
[22] Hemberger, J. Nature 434 (2005) 364 Google Scholar
[23] Lines, M.E. Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials, 1977 Google Scholar
[24] Sugie, H. Iwata, N. Kohn, K. J. Phys. Soc. Japan, 71 (2002) 1558 Google Scholar
[25] Kimura, T. Goto, T. Shintani, H. Ishizaka, K. Arima, T. Tokura, Y. Nature 426 (2003) 55 Google Scholar
[26] Hur, N. Park, S. Sharma, P.A. Ahn, J.S. Guha, S. Cheong, S-W., Nature 429 (2004) 392 Google Scholar
[27] Fox, D. Scott, J.F. J. Pfys. C 10 (1977) L329 Google Scholar
[28] Kimura, T. Lawes, G. Ramirez, G.A.P, Phys. Rev. Lett. 94 (2005) 137201 Google Scholar
[29] Palkar, V.R. Malik, S.K. Solid State Com. 786 134 (2005) 783786 Google Scholar
[30] Nan, C.W. Liu, L., Cai, N. Zhai, J. Ye, Y. Lin, Y.H. Dong, L.J. Xiong, C.X. Appl. Phys. Lett. 81 (2002) 3831 Google Scholar
[31] Cai, N. Nan, C.W. Zhai, J. Lin, Y. Appl. Phys. Lett. 84 (2004) 3516 Google Scholar
[32] Ryu, J, Carazo, V, Uchino, K. Kim, H.E. Jpn. J. Appl. Phys. 40 (2001) 4948 Google Scholar
[33] Srinivasan, G. Rasmussen, E. T. Levin, B. J. and Hayes, R. Phys. Rev. B 65 (2002) 134402 Google Scholar
[34] Lee, M.K. Nath, T.K. Eom, C.B. Smoak, M.C. Tsui, F. Appl. Phys. Lett. 77 (2000) 3547 Google Scholar
[35] Kim, S.S. Lee, J.W. Shin, S.C. Song, H.W. Lee, C.H. No, K. J. Magn. Magn. Mater. 267 (2003) 127 Google Scholar
[36] Srinivasan, G. Rasmussen, E. T. Gallegos, J. Srinivasan, R. Bokhan, Yu. I. and Laletin, V. M., Phys. Rev. B 64 (2001) 214408 Google Scholar
[37] Ryu, H. Murugavel, P. Lee, J.H. Chae, S.C. Noh, T.W. Oh, Y.S. Kim, H.J. Kim, K.H. Jang, J.H. Kim, M. Bae, C. Park, J.G. Appl. Phys. Lett. 89 (2006) 102907 Google Scholar
[38] Laletsin, U. Padubnaya, N. Srinivasan, G. Devreugd, C.P. Appl. Phys. A 78 (2004) 33 Google Scholar
[39] Srinivasan, G. Rasmussen, E. T. Hayes, R. Phys. Rev. B 67 (2003) 014418 Google Scholar
[40] Fiebig, M., Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123 Google Scholar
[41] Eerenstein, W. Mathur, N.D. Scott, J.F. Nature 442 (2006) 759 Google Scholar
[42] Vopsaroiu, M. Stewart, M. Hegarty, T. Muniz-Piniella, A., McCartney, N. Cain, M. Srinivasan, G., Meas. Sci. Technol. 19 (2008) 045106 Google Scholar
[43] Blackburn, J. Vopsaroiu, M. Cain, M. G. Journal of Applied Physics, 104 074104 (2008)Google Scholar
[44] Blackburn, J.F. Cain, M.G, J. Appl. Phys. 100 (2006) 114101 Google Scholar
[45] Tumanski, S. Thin Film Magnetoresistive Sensors, IOP publishing (2001) ISBN 0750307021Google Scholar
[46] Thompson, Sarah M, The discovery, development and future of GMR: The Nobel Prize 2007, J. Phys. D: Appl. Phys. 41 (2008) 093001 Google Scholar
[47] Williams, E. M. Design and Analysis of Magnetoresistive Recording Heads, (2001) ISBN 0-471-36358-8Google Scholar
[48] Julliere, M. Phys. Lett. 54A (1975) 225 Google Scholar
[49] Slonczewski, J. C. Phys. Rev. B 39 (1989) 6995 Google Scholar
[50] Vopsaroiu, M. Blackburn, J. Cain, M. G. J. Phys D: Applied Physics, Vol. 40, pp. 5027 (2007)Google Scholar
[51] Vopsaroiu, M. Blackburn, J. Piniella, A. Cain, M. G. Journal of Applied Physics 103, 07F506 (2008)Google Scholar
[52] Zhang, Y. Zheng, L. Deng, C. Ma, J. Lin, Y. Ce-Wen, Nan, Applied Phys. Letters 92, 152510 (2008)Google Scholar
[53] Fulcomer, E. Charap, S. H. J. Appl. Phys. 43, 4184 (1972)Google Scholar
[54] Wood, R. Miles, J. Olson, T. IEEE Trans. Magn. Vol. 38, No 4, 1711 (2002)Google Scholar
[55] Zheng, H. Wang, J. Lofland, S.E. Ma, Z. Mohaddes-Ardabili, L., Zhao, T. Salamanca-Riba, L., Shinde, S.R. Ogale, S.B. Bai, F. Viehland, D. Jia, Y. Schlom, D.G. Wuttig, M. Roytburd, A., Ramesh, R. Science 303 (2004) 661663 Google Scholar
[56] Choudhury, R.N.P. odríguez, C., Bhattacharya, P. Katiyar, R.S.. Rinaldi, C. Journal of Magnetism and Magnetic Materials, Volume 313, Issue 2 (2007) 253260 Google Scholar
[57] Zhai, J. Cai, N. Shi, Z. Lin, Y. Nan, Ce-Wen, J.Phys. D: Appl. Phys. 37 (2004) 823827 Google Scholar
[58] Dong, Shuxiang, Li, Jie-Fang, Viehland, D. Appl. Phys. Lett. 83 (2003) 22652267 Google Scholar