Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T23:24:47.179Z Has data issue: false hasContentIssue false

Electron-Spin-Resonance Investigation of Laser Crystallized Polycrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

K. Brendel
Affiliation:
Hahn-Meitner-Institut Berlin, Silicon Photovoltaics Kekuléstr. 5, D-12489 Berlin, Germany
N. H. Nickel
Affiliation:
Hahn-Meitner-Institut Berlin, Silicon Photovoltaics Kekuléstr. 5, D-12489 Berlin, Germany
K. Lips
Affiliation:
Hahn-Meitner-Institut Berlin, Silicon Photovoltaics Kekuléstr. 5, D-12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut Berlin, Silicon Photovoltaics Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

Doped and undoped laser crystallized polycrystalline silicon was investigated by electron-spin-resonance experiments. In P-doped samples two resonance are detected at g = 2.0053 and g = 1.998 which are due to silicon dangling bonds and conducting electrons, respectively. After crystallization a large amount of hydrogen remains in the samples. This residual hydrogen can be activated to reduce the spin density by passivating dangling-bonds. The temperature dependent investigation of the conducting electron resonance reveals that the susceptibility can be described by the sum of Pauli and Curie paramagnetism. The data are discussed in terms of models developed for single crystal and microcrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Christiansen, S., Lengsfeld, P., Krinke, J., Nerding, M., Nickel, N. H., and Strunk, H. P., J. Appl. Phys. 86 5348 (2001).Google Scholar
2. Johnson, N. M., Biegelson, D. K., and Moyer, M. D., Appl. Phys. Lett. 40 882 (1982).Google Scholar
3. Jackson, W. B., Johnson, N. M., and Biegelsen, D. K., Appl. Phys. Lett. 43 195 (1983).Google Scholar
4. Nickel, N. H., Lengsfeld, P., and Sieber, I., Phys. Rev. B 61 15558 (2000).Google Scholar
5. Lengsfeld, P., Brehme, S., Brendel, K., Genzel, C., and Nickel, N.H., phys. stat. sol. 235 170 (2003).Google Scholar
6. Lengsfeld, P., Nickel, N. H., and Fuhs, W., Appl. Phys. Lett. 76 1680 (2000).Google Scholar
7. Nickel, N. H. and Brendel, K., Appl. Phys. Lett. 82 3029 (2003).Google Scholar
8. Brendel, K. and Nickel, N. H., in: Sameshima, T., Fukyuki, T., Strunk, H. P., and Werner, J. H. (Ed.), Polycrystalline Semiconductors VII-Bulk Materials, Thin Films and Devices, Nara, Japan, Scitech Publ., Uettikon am See, Switzerland, 2002.Google Scholar
9. Quirt, J. D. and Marko, J. R., Phys. Rev. B 5 1716 (1972).Google Scholar
10. Ueand, H. Maekawa, S., Phys. Rev. B 3 4232 (1971).Google Scholar
11. Lips, K., Kanschat, P., Brehme, S., and Fuhs, W., J. of non-Cryst. solids 299-302 350 (2002).Google Scholar
12. Fuhs, W., Kanschat, P., and Lips, K., J.Vac. Sci. Tech. 18 1792 (2000).Google Scholar
13. Nickel, N. H., Johnson, N. M., and Jackson, W. B., Appl. Phys. Lett. 62 3285 (1993).Google Scholar