Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:36:18.607Z Has data issue: false hasContentIssue false

Electronic-Structure Calculation of 3d Transition-Metal Point Defects in Silicon

Published online by Cambridge University Press:  28 February 2011

Franz Beeler
Affiliation:
Max-Planck Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
Ole K. Andersen
Affiliation:
Max-Planck Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
Matthias Scheffler
Affiliation:
Physikalisch-Technische Bundesanstalt, PF 3345, D-3300 Braunschweig, Federal Republic of Germany
Get access

Abstract

The states of lowest energy have been calculated for iron-group (3d) transition-metal impurities in silicon. The donor and acceptor levels reproduce all experimentally observed transitions and trends. The theory predicts that the ground states of the early 3d interstitials and late 3d substitutionals have low spin. This is in conflict with the generally accepted model of Ludwig and Woodbury, if applied to these impurities, but not with existing experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Ludwig, G.W. and Woodbury, H.H., in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York, 1962), Vol. 13, p. 223 Google Scholar
2) Graff, K. and Pieper, H., in Semiconductor Silicon, edited by Huff, H.R., Kriegler, J., and Takeishi, Y. (The Electrochemical Society, Pennington, N.J., 1981), p. 331 Google Scholar
3) Weber, E. R., Appl. Phys. A30, 1 (1983)CrossRefGoogle Scholar
4) DeLeo, G.G., Watkins, G.D., and Fowler, W.B., Phys. Rev. B23, 1851 (1981); B252 4962 (1982); B25, 4972 (1982)Google Scholar
5) Zunger, A. and Lindefelt, U., Phys. Rev. B26, 5989 (1982)CrossRefGoogle Scholar
6) Lindefelt, U. and Zunger, A., Phys.Rev. B30, 1102 (1984)CrossRefGoogle Scholar
7) Wezep, D.A. van and Ammerlaan, C.A.J., J. Electron. Materials 14a, 863 (1985)Google Scholar
8) Feichtinger, H, Oswald, I., Czaputa, R., Vogl, P., and Wdnstel, K., J. Electron. Materials 14a, 855 (1985)Google Scholar
9) Conzelmann, H., Graff, K., and Weber, E.R., Appl. Phys. A 30, 169 (1983)Google Scholar
10) Greulich-Weber, S., Niklas, J.R., Weber, E.R., and Spaeth, J.-M., Phys. Rev. B30, 6292 (1984)CrossRefGoogle Scholar
11) Katayama-Yoshida, H. and Zunger, A., Phys. Rev. Letters 53, 1256 (1984)Google Scholar
12) Beeler, F., Andersen, O.K., and Scheffler, M., to be publishedGoogle Scholar
13) Gunnarsson, O., Jepsen, O.-O., and Andersen, O.K., Phys. Rev. B27, 7144 (1983)CrossRefGoogle Scholar
14) Perdew, J.P. and Levy, M., Phys. Rev. Letters 51, 1884 (1983)Google Scholar
15) Sham, L.J. and SchlUter, M., Phys. Rev. Letters 51, 1888 (1983)CrossRefGoogle Scholar
16) Baraff, G. and SchlUter, M., Phys. Rev. B30, 3460 (1984)Google Scholar
17) Zunger, A., Phys. Rev. B28, 3628 (1983)Google Scholar
18) Katayama-Yoshida, H. and Zunger, A., Bull.Am.Phys.Soc. 30, 302 (1985)Google Scholar
19)We note that scissor-operators should not (or at least only little) affect to the energy of very localized states as for example core or d-like states. Because those states correspond to very high lying conduction band states, the operator which corrects for the band gap should vanish for very high energies.Google Scholar