Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:08:16.874Z Has data issue: false hasContentIssue false

Electronic Structure, Photoemission and Superconductivity in PuCoGa5

Published online by Cambridge University Press:  01 February 2011

Alexander Shick
Affiliation:
[email protected], Institute of Physics ASCR, Condensed Matter Theory, Prague, Czech Republic
Sergii Khmelevskyi
Affiliation:
[email protected], Vienna U. of Technology, Institute of Applied Physics, Wien, Austria
Ladislav Havela
Affiliation:
[email protected], Charles University, Condensed Matter Physics, Prague, Czech Republic
Get access

Abstract

We study theoretically the electronic structure and photoemission spectra of PuCoGa5 making use of the LDA+Hubbard I approximation implemented in the full-potential LAPW basis, including self-consistency over the charge density. The calculations show relative reduction of the f-states spectral weight at the Fermi energy. There is fairly good agreement between calculated photoemission spectra and experimental results. We demonstrate that an account of Pu f-electron Coulomb correlations does not modify significantly the Fermi surface topologies but leads to substantial reduction of the f-character for the electronic states at the Fermi energy. These findings can be important for the theory of superconductivity in PuCoGa5 and related compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sarrao, J. L. Morales, L. A. Tompson, J. D. et al., Nature (London) 420, 297 (2002).Google Scholar
2 Curro, N. J. Caldwell, T., Bauer, E.D. et al., Nature (London) 434, 622 (2005).Google Scholar
3 Hiess, A., Stunault, A., Colineau, E. et al., Phys. Rev. Lett. 100, 076403 (2008).Google Scholar
4 Opahle, I., and Oppeneer, P. M. Phys. Rev. Lett. 90, 157001 (2007).Google Scholar
5 Ummarino, G. A. Magnani, N., Griveau, J.-C. et al., J. Nucl. Mater. 385, 4 (2008).Google Scholar
6 Shick, A. B. Kolorenc, J., Lichtenstein, A. I. and Havela, L., Phys.Rev. B 80, 085106 (2009).Google Scholar
7 Eloirdi, R., Havela, L., Gouder, T. et al., J. Nucl. Mater. 385, 8 (2009).Google Scholar
8 Joyce, J. J. Wills, J. M. Durakiewicz, T. et al., Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
9 Bauer, E. D. Tompson, J. D. Sarrao, J. L. et al., Phys. Rev. Lett. 93, 147005 (2004).Google Scholar
10 Oppeneer, P. M. Shick, A. B. Rusz, J. et al., J. Alloys and Comp. 444–445, 109 (2007).Google Scholar
11 Javorsky, P., Colineau, E., Wastin, F. et al., Phys. Rev. B 75, 184501 (2007).Google Scholar
12 Bauer, E. D. Park, T., McDonald, R.D. et al., J. Alloys and Comp. 488, 554 (2009).Google Scholar