Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T18:30:33.834Z Has data issue: false hasContentIssue false

Electronic structure of helically coiled carbon nanotubes

Published online by Cambridge University Press:  26 February 2011

Gian Giacomo Guzman-Verri
Affiliation:
[email protected], Wright State University, Physics, 248 Fawcett Hall Wright State University 3640 Colonel Glenn HWY, Dayton, OH, 45435-0001, United States, 937-775-2954, 937-775-2222
Lok C. Lew Yan Voon
Affiliation:
[email protected], Wright State University, Department of Physics, United States
Morten Willatzen
Affiliation:
[email protected], Mads Clausen Institute for Product Innovation, University of Southern Denmark, Denmark
Jens Gravesen
Affiliation:
[email protected], Technical University of Denmark, Department of Mathematics, Denmark
Get access

Abstract

In the present work we calculate the electronic band structure of single-wall helical carbon nanotubes following an effective-mass approach. We include curvature effects and strain due to bending in the band structure. The curvature energy ΔE, and the change in the electronic energy ΔEs due to strain, depend upon the coil pitch and coil diameter of the tube. We find 0.003 ≤|ΔE|≤ 1.3 eV and 0 ≤ΔEs ≤ 4.0 eV for the single-wall helical carbon nanotubes considered here.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dunlap, B. I., Phys. Rev. B 46, 1933 (1992).Google Scholar
2 Itoh, S., Ihara, S., Kitakami, J., Phys. Rev. B 47, 1703 (1993).Google Scholar
3 Ivanov, V., Nagy, J. B., Lambin, Ph., Lucas, A. A., Zhang, X. B., Zhang, X. F., Bernaerts, D., Van Tendeloo, G., Amelinckx, S., J. Van Landuyt, Chem. Phys. Lett. 223, 329 (1994).Google Scholar
4 Zhang, X. B., Zhang, X. F., Bernaerts, D., Van Tendeloo, G., Amelinckx, S., Van Landuyt, J., Ivanov, V., Nagy, J. B., Lambin, Ph., Lucas, A. A., Europhys. Lett. 27, 141 (1994).Google Scholar
5 Bajpai, V., Dai, L., Toshiyuki, O., J. Am. Chem. Soc. 126, 5070 (2004).Google Scholar
6 Volodin, Buntinx D; Ahlskog, M; Fonseca, A; Nagy, JB; Van Haesendonck, C. Nano Letters, 4, 1775 (2004).Google Scholar
7 Ando, T., J. Phys. Soc. Jpn., 74, 777 (2005).Google Scholar
8 Lu, Mei, Li, Hu-Lin, Lau, Kin-Tak, Phys. Chem. B 108, 6186 (2004).Google Scholar
9 Agaki, K., Tamura, R., Tsukada, M., Phys. Rev. Lett. 74, 2307 (1995).Google Scholar
10 Tamura, R., Tsukada, M., J. Phys. Soc. Jpn. 68, 910 (1999).Google Scholar
11 Gravesen, J., Willatzen, M., Voon, L. C. Lew Yan, J. Math. Phys. 46, 012107 (2005).Google Scholar
12 Biró, L. P., Ehlich, R., Osvath, Z., Koos, A., Horvath, Z. E., Gyulai, J., Nagy, J. B., Materials Science & Engineering C 19 37, Sp. Iss. SI. (2002).Google Scholar
13 Saito, R., Dresselhaus, G., Dresselhaus, M, Physical Properties of Carbon Nanotubes (Imperial College Press, London 2001) p. 27.Google Scholar
14 Suzuura, H., Ando, T., Phys. Rev. B 65, 235412 (2002).Google Scholar