Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:04:11.371Z Has data issue: false hasContentIssue false

Electronic Structure of Fullerene Tubules

Published online by Cambridge University Press:  25 February 2011

J. W. Mintmire
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
D. H. Robertson
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
B. I. Dunlap
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
R. C. Mowrey
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
D. W. Brenner
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
C. T. White
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

Recent reports suggest that graphitic tubules with diameters on the order of fullerene diameters have been synthesized. Such small-diameter tubules should have electronic properties related to those of two-dimensional graphite. We demonstrate by comparison with results from a first-principles, self-consistent, all-electron Gaussian-orbital based local-density functional approach that an all-valence tight-binding model can be expected to give a reasonable description of the electronic states of these tubules. In analyzing both high-symmetry tubules and lower-symmetry chiral tubules, we see that a relatively high carrier density could be expected for many of these structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990), Nature 347, 354 (1990).Google Scholar
2. Dresselhaus, M. and Dresselhaus, G. F., private communication.Google Scholar
3. Wang, S. and Buseck, P. R., Chem. Phys. Lett. 182, 1 (1991).Google Scholar
4. Chai, Y., Guo, T., Jin, C., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L., Alford, J. M., and Smalley, R. E., J. Phys. Chem. 95, 7564 (1991).Google Scholar
5. Tibbetts, G. G., J. Crystal Growth 66, 632 (1984).Google Scholar
6. Speck, J. S., Endo, M., and Dresselhaus, M. S., J. Crystal Growth 94, 834 (1989).Google Scholar
7. Iijima, S., Nature 354, 56 (1991).Google Scholar
8. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
9. Taylor, R., Hare, J. P., Abdul-Sada, A. K., and Kroto, H. W., J. Chem. Soc., Chem. Commun., 1423 (1990).Google Scholar
10. Johnson, R. D., Meijer, G., and Bethune, D. S., J. Am. Chem. Soc. 112, 8983 (1990).Google Scholar
11. Ajie, H., Alvarez, M. M, Anz, S. J., Beck, R. D., Diederich, F., Fostiropoulos, K., Huffman, D. R., Krätschmer, W., Rubin, Y., Schriver, K. E., Sensharma, D., and Whetten, R. L., J. Phys. Chem. 94, 8630 (1990).Google Scholar
12. Johnson, R. D., Meijer, G., Salem, J. R., and Bethune, D. S., J. Am. Chem. Soc. 113, 3619 (1991).Google Scholar
13. Mintmire, J. W. and White, C. T., Phys. Rev. Lett. 50, 101 (1983); Phys. Rev. B 28, 3283 (1983).Google Scholar
14. Mintmire, J. W., in Density Functional Methods in Chemistry, (Eds., Labanowski, J. and Andzelm, J.), pp. 125138, Springer-Verlag (1991).Google Scholar
15. Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
16. Elert, M. L., Mintmire, J. W., and White, C. T., J. Phys. (Paris), Colloq. 44, C3451 (1983).Google Scholar
17. Elert, M. L., White, C. T., and Mintmire, J. W., Mol. Cryst. Liq. Cryst. 125, 329 (1985).Google Scholar
18. Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, xxx (1992).Google Scholar
19. Peierls, R. E., Quantum Theory of Solids (Oxford Univ. Press, New York, 1955), p. 108.Google Scholar