Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T23:52:37.406Z Has data issue: false hasContentIssue false

Electronic Structure of CuZr and PdSi Metallic Glasses

Published online by Cambridge University Press:  15 February 2011

Francisco A. Leon
Affiliation:
Center for Materials Science and Engineering, M.I.T., Cambridge, Massachusetts
Keith H. Johnson
Affiliation:
Center for Materials Science and Engineering, M.I.T., Cambridge, Massachusetts
Get access

Abstract

The local electronic structures of representative amorphous alloys have been calculated using the SCF-Xα-SW cluster molecular orbital method. Prototype cluster models have been constructed for Cu-Zr and Pd-Si alloys which exemplify two major classes of binary (A-B) glass-forming systems, namely: (1) metallic glasses based on noble or transition elements (e.g., A=Cu) toward the right of the periodic table and transition elements (e.g., B=Zr) toward the left of the periodic table; (2) metalloid glasses based on transition elements (e.g., A=Pd) toward the middle of the periodic table and nonmetallic elements (e.g., B=Si) toward the right of the periodic table. The calculated electronic structures are in good quantitative agreement with, and provide an interpretation of, published photoelectron spectra for the above amorphous alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the National Science Foundation through the Center for Materials Science and Engineering, M.I.T.

References

REFERENCES

1.Chen, H. S. and Waseda, Y., Phys. Stat. Sol. (a) 51, 593 (1979).Google Scholar
2.Wong, J. in “Metallic Glasses” Vol. 1, Ed. by Guntherodt, H. -J. and Beck, H., Springer-Verlag, Berlin, Chapter 3 (1980).Google Scholar
3.Messmer, R. P., Knudsen, S. K., Johnson, K. H., Diamond, J. B. and Yang, C. Y., Phys. Rev. B13, 1396 (1976).Google Scholar
4.Salahub, D. R. and Messmer, R. P., Phys. Rev. B16, 2526 (1977);10.1103/PhysRevB.16.2526Google Scholar
Messmer, R. P. and Salahub, D. R., ibid. 16, 3415 (1977).Google Scholar
5.Johnson, K. H., Vvedensky, D. D. and Messmer, R. P., Phys. Rev. B19, 1519 (1979).Google Scholar
6.Fischer, T. E., Kelemen, S. R., Wang, K. P. and Johnson, K. H., Phys. Rev. B20, 3124 (1979).Google Scholar
7.Johnson, K. H., Kolari, H. J., deNeufville, J. P. and Morel, D. L., Phys. Rev. B21, 643 (1980).10.1103/PhysRevB.21.643Google Scholar
8.Wong, J., private communication.Google Scholar
9.Oelhafen, P., Hauser, E., Guntherodt, H. -J. and Benneman, K. H., Phys. Rev. Lett. 43, 1134 (1979).Google Scholar
10.Gaskell, P. H., Nature 276, 484 (1978).Google Scholar
11.Suzuki, K., Fukunaga, T., Misawa, M. and Masumoto, T., Mater. Sci. Eng. 23, 215 (1976).Google Scholar
12.Oelhafen, P., Liard, M., Guntherodt, H. -J., Berresheim, K. and Polaschegg, H. D., Solid State Comm. 30, 641 (1979).Google Scholar