Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:13:18.224Z Has data issue: false hasContentIssue false

Electronic Structure of CsBi4Te6

Published online by Cambridge University Press:  01 February 2011

P. Larson
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
S.D. Mahanti
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
D-Y Chung
Affiliation:
Department of Chemistry, and, Michigan State University, East Lansing, MI 48824 Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
M.G. Kanatzidis
Affiliation:
Department of Chemistry, and, Michigan State University, East Lansing, MI 48824 Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

Recently, CsBi4Te6 has been reported as a high-performance thermoelectric material for low temperature applications with a higher thermoelectric figure of merit (ZT ∼ 0.8 at 225 Kelvin) than conventional Bi2-xSbzTe3-ySey alloys at the same temperature. First-principle electronic structure calculations within density functional theory performed on this material give an indirect narrow-gap semiconductor. Dispersions of energy bands along different directions in k-space display large anisotropy and multiple conduction band minima close in energy, characteristics of a good thermoelectric material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thermoelectric Materials- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications. edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545 (Materials Research Society, Pittsburgh, 1999);Google Scholar
DiSalvo, F.J., Science 285, 703 (1999);Google Scholar
Tritt, T.M., Science 283, 804 (1999).Google Scholar
[2] Chung, D-Y, Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M.G., Science 287, 1024 (2000);Google Scholar
Brazis, P., Rocci, M., Chung, D-Y, Kanatzidis, M.G., Kannewurf, C.R.. Thermoelectric Materials-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545, 75 (Materials Research Society, Pittsburgh, 1999);Google Scholar
Kanatzidis, M. G., Chung, D-Y, Iordanidis, L., Choi, K-S, Brazis, P., Rocci, M., Hogan, T., Kannewurf, C.R., Thermoelectric Materials-The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Kanatzidis, M.G., Mahan, G.D., and Lyon, H.B. Jr, MRS Symposia Proceedings No. 545, 233 (Materials Research Society, Pittsburgh, 1999).Google Scholar
[3] Larson, P., Mahanti, S.D., Kanatzidis, M.G.. Phys. Rev. B 61, 8162 (2000)Google Scholar
[4] Mishra, S.K., Satpathy, S., Jepsen, O., J. Phys.: Condens. Matter 91, 461 (1997).Google Scholar
[5] Singh, D., Planewaves, Pseudopotentials, and the LAPWMethod (Kluwer Academic, Boston, 1994).Google Scholar
[6] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L., Phys. Rev. 140, A1133 (1965).Google Scholar
[7] Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
[8] Blaha, P., Schwarz, K., and Luitz, J., WIEN97 (Vienna University of Technology, Vienna, 1997).Google Scholar
[9] Koelling, D.D. and Harmon, B., J. Phys. C 10, 3107 (1977); P. Novak (unpublished).Google Scholar
[10] Hicks, L.D., Hárman, T.C., and Dresselhaus, M.S., Appl. Phys. Lett. 63, 3230 (1993);Google Scholar
Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993);Google Scholar
Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B, 12727 (1993).Google Scholar
[11] Larson, P., Mahanti, S.D., Sportouch, S., and Kanatzidis, M.G., Phys. Rev. B 59, 15660 (1999).Google Scholar