Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:17:48.640Z Has data issue: false hasContentIssue false

Electronic structure calculations of δ-Pu based alloys

Published online by Cambridge University Press:  01 February 2011

Alex Landa
Affiliation:
Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
Per Söderlind
Affiliation:
Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
Andrei Ruban
Affiliation:
CAMP & Physics Department, Technical University of Denmark, DK-2800, Lyngby, Denmark
Get access

Abstract

First-principles methods are employed to study the ground-state properties of δ-Pu-based alloys. The calculations show that an alloy component larger than δ-Pu has a stabilizing effect. Detailed calculations have been performed for the δ-Pu1−cAmc system. Calculated density of Pu-Am alloys agrees well with the experimental data. The paramagnetic → antiferromagnetic transition temperature (Tc) of δ-Pu100−cAmc alloys is calculated by the Monte-Carlo technique. By introducing Am into the system, one could lower Tc from 548 K (pure Pu) to 372 K (Pu70Am30). We also found that, contrary to pure Pu where this transition destabilizes δ-phase, Pu3Am compound remains stable in the antiferromagnetic phase that correlates with the recent discovery of the Curie-Weiss behavior of δ-Pu100−cAmc alloys at c ≥ 24 at. %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johansson, B., Phys. Rev. B11, 2740 (1975).Google Scholar
2. Söderlind, P., Europhys. Lett. 55, 525 (2001).Google Scholar
3. Söderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B66, 205109 (2002).Google Scholar
4. Landa, A. and Söderlind, P., J. Alloys Comp. 354, 99 (2003).Google Scholar
5. Landa, A. and Söderlind, P., J. Phys.: Condens. Matter 15, L371 (2003).Google Scholar
6. Roberts, G., Pasturel, A., and Siberchicot, B., Phys. Rev. B68, 075109 (2003).Google Scholar
7. Dormeval, M., “Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys stabilized in the δ-phase”. PhD Thesis, (University de Bourgogne, Dijon, France, 2001).Google Scholar
8. Abrikosov, I. A. and Skriver, H. L., Phys. Rev. B47, 16532 (1993).Google Scholar
9. Ruban, A. V. and Skriver, H. L., Comput. Mater. Sci. 15, 119 (1999).Google Scholar
10. Wills, J. M. and Cooper, B. R., Phys. Rev. B36, 3809 (1987);Google Scholar
Price, D. L. and Cooper, B. R., Phys. Rev. B39, 4945 (1989).Google Scholar
11. Vitos, L., Johansson, B., Kollar, J., and Skriver, H. L., Phys. Rev. A61, 052511 (2000); Phys. Rev. B62, 10046 (2000).Google Scholar
12. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M.R., and Singh, D. J., Phys. Rev. B46, 6671 (1992).Google Scholar
13. Györffy, B. L., Pindor, A. L., Stocks, G. M., Staunton, G. M., and Winter, H., J. Phys.: Met. Phys. F15, 1337 (1985).Google Scholar
14. Johnson, D. D., Nicholson, D. M., Pinski, F. J., Györffy, B. L., and Stocks, G. M., Phys. Rev. Lett. 56, 2088 (1986); Phys. Rev. B41, 9701 (1990).Google Scholar
15. Ellinger, F. H., Johnson, K.A., and Struebing, V. O., J. Nucl. Mat. 20, 83 (1966).Google Scholar
16. Söderlind, P., Eriksson, O., Johansson, B., Wills, J. M., and Boring, A. M., Nature 374, 524 (1995);Google Scholar
Söderlind, P., Adv. Phys. 47, 959 (1998).Google Scholar