Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:21:20.310Z Has data issue: false hasContentIssue false

Electronic Structure and Magnetic Properties of Ti-doped ZnO

Published online by Cambridge University Press:  31 January 2011

Soumia Lardjane
Affiliation:
[email protected], A. Belkaid Uniersity, LEPM-URMER, Tlemcen, Algeria
Ghouti Merad
Affiliation:
[email protected], A. Belkaid Uniersity, LEPM-URMER, Tlemcen, Algeria
Houda Imane Faraoun
Affiliation:
[email protected], A. Belkaid Uniersity, LEPM-URMER, Tlemcen, Algeria
Get access

Abstract

Recent experiments suggest that Ti doped ZnO can be a promising room temperature dilute magnetic semiconductor (DMS) and a potentially useful material for spintronic devices. Furthermore, the fact that Ti doped ZnO shows ferromagnetic behaviour despite it contains no magnetic element makes this system good candidate for theoretical investigation regarding the controversies about the origin of ferromagnetic ordering in TM-doped ZnO. In this work, the density functional theory (DFT) is used to calculate the electronic and magnetic structures of Ti-doped ZnO. The obtained results are used to discuss the origin of the ferromagnetism, and the contribution of different atoms in the magnetic moment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ueda, K., Tabata, H., Kawai, T., Magnetic and electric properties of transition-metal-doped ZnO films, Appl. Phys. Lett. 79 (2001) 988990.Google Scholar
2 Imai, Y., Watanabe, A., Comparison of electronic structures of doped ZnO by various impurity elements calculated by a first-principle pseudopotential method, J. Mater. Sci. Mater. Electron. 15 (2004) 743749.Google Scholar
3 Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., et al., Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93 (2004) 177206177209.Google Scholar
4 Rao, C.N.R., Deepak, F.L., Absence of ferromagnetism in Mn- and Co-doped ZnO, J. Mater. Chem. 15 (2005) 573578.Google Scholar
5 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); ibid. 49, 14 251 (1994). G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996). G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11 169 (1996).Google Scholar
6 Kresse, G. and Hafner, J., J. Phys.: Condens. Matt. 6, 8245 (1994).Google Scholar
7 Hohenberg, P. and Kohn, W.. Phys. Rev. B3 136 (1964) 864871.Google Scholar
8 Perdew, J. P. and Wang, Y., Phys. Rev. B45 (1992) 13244.Google Scholar
9 Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13 (1976) 5188.Google Scholar
10 Wyckoff, R.W.G., Crystal Structures, Vol. 1, 2nd Edition, Wiley, New York, 1986 p.112.Google Scholar
11 Osuch, K., Lombardi, E.B., Gebick, W.I., First principles study of ferromagnetism in Ti0.0625Zn0.9375O, Phys. Rev. B 73 (075202) (2006) 15.Google Scholar
12 Sato, K., Katayama-Yoshida, H., Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, Jpn. J. Appl. Phys. 39 (2000) L555–L558.Google Scholar
13 Sato, K., Katayama-Yoshida, H., Ferromagnetism in a transition metal atom doped ZnO, Physica E 10 (2001) 251255.Google Scholar
14 Sato, K., Dederics, P.H., Katayama-Yoshida, H., Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles, Europhys. Lett. 61 (2003) 403408.Google Scholar