Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T05:25:35.505Z Has data issue: false hasContentIssue false

Electronic Properties of Ideal and Interface-Modified Metal-Semiconductor Contacts

Published online by Cambridge University Press:  26 February 2011

Winfried Mönch*
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
Get access

Abstract

Barrier heights in metal-semiconductor contacts may be modified by interlayers. The effects of atomic interlayers are due to interface dipoles. With the restriction to nearest-neighbor interactions and monovalent interlayer atoms, they may be described as interface molecules which consist of an interlayer and a substrate atom. If the interlayers are thicker than a few atomic layers their two interfaces with the metal and with the semiconductor will be non-interacting. Both types of interfaces are described by the model that interface-induced gap states determine the alignment of the bands and the electronegativity difference describes the charge transfer across the interface. The present paper discusses and analyzes experimental data for H-modified diamond and silicon, Al/Si/GalnP, and metal/ Si3N4/Si Schottky contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schottky, W., Naturwissenschaften 26, 843 (1938).Google Scholar
2. Heine, V., Phys. Rev. 138, A 1689 (1965).Google Scholar
3. Louis, E., Yndurain, F., and Flores, F., Phys. Rev. B 13 , 4408 (1976).Google Scholar
4. Louie, S.G. and Cohen, M.X., Phys. Rev. B 13, 2461 (1976).Google Scholar
5. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984); Surf. Sci. 168, 275, (1986).Google Scholar
6. Mönch, W., in Festköperprobleme (Adv. in Solid-State Physics) vol. 26, ed. by Grosse, P. (Vieweg, Braunschweig, 1986), p. 67.Google Scholar
7. Pauling, L., The Nature of the Chemical Bond, 2nd ed. (Cornell Univ. , Ithaca, NY, 1960).Google Scholar
8. Mönch, W., in Gallium Arsenide Technology Vol. II, ed. by Ferry, D.K. (Sams & Co., Carmel, Ind., 1989).Google Scholar
9. Mönch, W., Appl. Surf. Sci. in print.Google Scholar
10. Tejedor, C. and Flores, F., J. Phys. C 11, L19 (1978).Google Scholar
11. Cardona, M. and Christensen, N.E., Phys. Rev. B 35, 6182 (1987).Google Scholar
12. Harrison, W.A. and Tersoff, J., J. Vac. Sci. Technol. B 4,1068 (1986).Google Scholar
13. Wang, R.-Z., Ke, S-H., and Huang, M.C., J. Phys.: Condens. Matter 4, 8083 (1992).Google Scholar
14. Miedema, A.R., de Boer, F.R., and de Chatel, P.F., F. Phys. F 3, 1588 (1973).Google Scholar
15. Turner, M.J. and Rhoderick, E.H., Solid-State Electron. 11, 291 (1968).Google Scholar
16. Smith, B.L. and Rhoderick, E.H., Solid-State Electron. 14, 71 (1971).Google Scholar
17. Waldrop, J.R., J. Vac. Sci. Technol. B 2, 445 (1984).Google Scholar
18. Aboelfotoh, M.O. and Tu, N.K., Phys. Rev. B 34, 2311 (1986).Google Scholar
19. Newman, N., van Schilfgarde, M., and Spicer, W.E., Phys. Rev. B 35, 6298 (1987).Google Scholar
20. Mönch, W., Phys. Rev. Lett. 58, 1260 (1987); Phys. Rev. B 37, 7129 (1988).Google Scholar
21. Mönch, W., Europhys. Lett. 27, 479 (1994).Google Scholar
22. Mönch, W., Semiconductor Surfaces and Interfaces 2nd ed. (Springer, Berlin 1995).Google Scholar
23. Schmitsdorf, R.F., Kampen, T.U., and Mönch, W., Surf. Sci. in print.Google Scholar
24. Spicer, W.E., Lindau, I., Skeath, P., and Su, C.Y., J. Vac. Sci. Technol. 17, 1019 (1980).Google Scholar
25. Weber, E.R., Ennen, H., Kaufmann, U., Windscheif, J., and Schneider, J., J. Appl. Phys. 53, 6140 (1982).Google Scholar
26. Mönch, W., Surf. Sci. 132, 92 (1983).Google Scholar
27. Waldrop, J., J. Vac. Sci. Technol. B 2, 445 (1984).Google Scholar
28. Aoki, M. and Kawarada, H., Japan. J. Appl. Phys. 33, L708 (1994).Google Scholar
29. Kampen, T.U. and Mönch, W., Surf. Sci. in print.Google Scholar
30. Hanney, N.B. and Smith, C.P., J. Am Chem. Soc. 68, 171 (1946).Google Scholar
31. Stockhausen, A. and Mönch, W., unpublished.Google Scholar
32. Topping, J., Proc. Roy. Soc. A 114, 67 (1927).Google Scholar
33. Ihm, J., Louie, S.G., and Cohen, M.L., Phys. Rev. Lett. 40, 1208 (1978).Google Scholar
34. Ludeke, R., in Metallization and Metal-Semiconductor Interfaces, ed. by. Batra, L.P. (Plenum, New York, 1989), p. 39.Google Scholar
35. Saiz-Pardo, R., Rincon, R., and Flores, F., Appl. Surf. Sci. in print.Google Scholar
36. Miller, T.J., Backes, G.B., and Nathan, M.I., J. Appl. Phys. 76, 7931 (1994).Google Scholar
37. Archer, R.J. and Atalla, M.M., Ann. New York Acad. Sci. 101, 697 (1963).Google Scholar
38. Kuech, T.F. and McCaldin, J.O., J. Vac. Sci. Technol. 17, 891 (1980).Google Scholar
39. Chang, E.Y., Lai, Y.-L., Lin, K.-C., and Chang, C.-Y., J. Appl. Phys. 74, 5622 (1993).Google Scholar
40. Sobolewski, M.A. and Helms, C.R., Appl. Phys. Lett. 54, 638 (1989).Google Scholar