Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:06:09.525Z Has data issue: false hasContentIssue false

Electronic Properties of Icosahedral Mg-Ai-Zn Alloys

Published online by Cambridge University Press:  26 February 2011

David V. Baxter
Affiliation:
Physics Department, McGill University Ernest Rutherford Physics Building, 3600 University St. Montreal, Quebec, Canada, H3A 2T8
J. O. Ström-Olsen
Affiliation:
Physics Department, McGill University Ernest Rutherford Physics Building, 3600 University St. Montreal, Quebec, Canada, H3A 2T8
Get access

Abstract

The resistivity and magnetic susceptibility of icosahedral Mg32(Al1-xZnx)49 have been measured for compositions between x=0.5 and x=0.69. Both quantities exhibit a stronger compositional dependence than do the same properties of the similar metallic glass Mg1-xZnx. The resistivity at low temperatures displays the classic behaviour as a function of temperature and magnetic field associated with the phenomenon of weak localization, and we are able to use this fact to measure the absolute resistivity in a way which is independent of sample geometry.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1). Kimura, K., Hashimoto, T., and Takeuchi, S., J. Phys. Soc. Jap. 55, 1810 (1986).Google Scholar
2). Berger, C., Pavuna, D., Cyrot-Lackmann, F., Germi, P., and Pasturel, A., Presented at the Sixth Intl. Conf. on Liquid and Amorphous Metals, Garmisch-Partenkirshen, Aug. 1986.Google Scholar
3). Rao, K. V., Karpe, N., Malmhall, R., Astrom, H. V., and Chen, H. S., in Mat. Res. Soc. Symp. Proc. vol.58, ed. Giessen, B. C., Polk, D. E., and Taub, A. I., Boston, Dec. 1985.Google Scholar
4). Sokoloff, J. B., Phys. Rev. Lett. 57, 2223 (1986).Google Scholar
5). Sastry, G. V. S., and Ramachandrarao, P., J. Mat. Res. 1, 246 (1986).Google Scholar
6). Wong, K. M., Lopdrup, E., Wagner, J. L., Shen, Y., and Poon, S. J., preprint.Google Scholar
7). Cochrane, R. W., Kastner, B. J., and Muir, W. B., J. Phys. E15 425 (1982).Google Scholar
8). Bancel, P. A., Heiney, P. A., Stephens, P. V., Goldman, A. I., Horn, P. M. Phys. Rev. Lett. 54, 2422 (1985).Google Scholar
9). Altounian, Z., Guo-Hua, Tu, and Strom-Olsen, J. O., J. Mat. Sci. 17, 3268 (1982).Google Scholar
10). Altshuler, B. L., and Aronov, A. G., in “Electron-Electron Interactions in Disordered Systems”, ed. Efros, A. L., and Pollak, M., North Holland, Amsterdam, 1985.Google Scholar
11). Fukuyama, H., and Hoshino, K., J. Phys. Soc. Jap. 50, 2131 (1981).Google Scholar
12). In principle other parameters appear as well: The diffusivity D (independent from its appearence in ρ), and the Maki-Thomson parameter β- In practice D is unimportant so long as it exceeds 1 cm2 /s. Using the value of p found from the fits, we estimate D to be about 5 cm2/s. β was set to zero since any attempt to vary it produced a small negative (i.e. unphysical) value for the optimal fit.Google Scholar
13). Baxter, D. V., Richter, R., and Strom-Olsen, J. O., unpublished.Google Scholar
14). McHenry, M. E., Eberhart, M.E., O'Handley, R. C., and Johnson, K. H., Phys. Rev. Lett. 56, 81 (1986). Also see the contribution of M. E. McHenry and R. C. O'Handley to these proceedings.Google Scholar
15). Bieri, J. B., Fert, A., Creuzet, G., and Ousset, J. C., Sol. Stat. Comm. 49, 849 (1984).Google Scholar