Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T03:59:13.178Z Has data issue: false hasContentIssue false

Electronic Excitation Induced Solid-State Amorphization in Ge-Sb-Te Alloy

Published online by Cambridge University Press:  23 June 2011

Xian-Bin Li
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
X.Q. Liu
Affiliation:
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022, China
Xin Liu
Affiliation:
Department of Physics, Applied Physics, & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA School of Chemistry, Dalian University of Technology, Dalian 116024, China
Dong Han
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Z. Zhang
Affiliation:
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022, China
X.D. Han
Affiliation:
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022, China
S. B. Zhang
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China Department of Physics, Applied Physics, & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Get access

Abstract

On the basis of ab initio molecular dynamics modeling, we show that Ge-Sb-Te alloy under excitation can realize amorphization without going through a liquid phase. The electronic structure analysis further reveals that the excitation mainly involves the Ge s-like states near the valence band maximum. After the phase transition, the coordination number of Ge is reduced from six to four, while the change in the coordination number for Sb is noticeably less.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wuttig, M., and Yamada, N., Nature Mater. 6, 824 (2007).Google Scholar
2. Kolobov, A. V., Fons, P., Frenkel, A. I., Ankudinov, A. L., Tominaga, J., and Uruga, T., Nature Mater. 3, 703 (2004).Google Scholar
3. Kim, J. J., Kobayashi, K., Ikenaga, E., Kobata, M., Ueda, S., Matsunaga, T., Kifune, K., Kojima, R., and Yamada, N., Phys. Rev. B 76, 115124 (2007).Google Scholar
4. Sun, Z., Zhou, J., Blomqvist, A., Johansson, B., and Ahuja, R., Phys. Rev. Lett. 102, 075504 (2009).Google Scholar
5. Van Vechten, J. A., Tsu, R., Saris, F. W., and Hoonhout, D., Phys. Lett. A 74, 417 (1979).Google Scholar
6. Van Vechten, J. A., Tsu, R., and Saris, F. W., Phys. Lett. A 74, 422 (1979).Google Scholar
7. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
8. Nosé, S., Prog. Theor. Phys. Suppl. 103, 1 (1991).Google Scholar
9. Matsunaga, T., Kubota, Y., and Yamada, N., Acta Crystallogr. B 60, 685 (2004).Google Scholar
10. Siegel, J. et al. , J. Appl. Phys. 103, 023516 (2008).Google Scholar
11. Kohara, S. et al. , Appl. Phys. Lett. 89, 201910 (2006).Google Scholar
12. Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., and Wuttig, M., Nature Mater. 7, 653 (2008).Google Scholar