Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:38:08.894Z Has data issue: false hasContentIssue false

Electron Microscopy of the Operation of Nanoscale Devices

Published online by Cambridge University Press:  01 February 2011

John Cumings
Affiliation:
Department of Physics, Stanford University, Stanford, California;
David Goldhaber-Gordon
Affiliation:
Department of Physics, Stanford University, Stanford, California;
A. Zettl
Affiliation:
Department of Physics, University of California, Berkeley, California; Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California;
M.R. McCartney
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona;
J. C. H. Spence
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona.
Get access

Abstract

A transmission electron microscope (TEM) is much more than just a tool for imaging the static state of materials. To demonstrate this, we present work on studying the mechanical and electrical properties of carbon nanotube devices. Multiwall carbon nanotubes are concentrically stacked tubular sheets of graphite, where the spacing between each cylinder is simply the natural spacing of graphite. Using a custom-built in-situ nanomanipulation probe, we have shown that it is possible to slide the nanotube layers in a telescopic extension mode that exhibits low friction, demonstrating the potential of nanotubes as the ultimate synthetic nanobearing. During this telescopic extension, the electrical resistance of the nanotube devices increases, opening the possibility that these devices can also be used as nanoscale rheostats. We also briefly describe work on using electron holography inside a TEM to study the electric field distribution in nanotube field-emission devices and on using a nanotube itself as a biprism for electron holography. These measurements together demonstrate the wealth of information that can be obtained and frontiers that can be opened by putting operational nanodevices inside an electron microscope.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Binnig, G. and Rohrer, H., Helv. Physica Acta 55 726–35 (1982)Google Scholar
[2] Binnig, G., Rohrer, H., Gerber, C., and Weibel, E., Phys. Rev. Lett. 50, 120 (1983)Google Scholar
[3] Eigler, D. M., and Schweizer, E. K., Nature 344, 524 (1990)Google Scholar
[4] Crommie, M. F., Lutz, C. P., and Eigler, D. M., D. M., , Science 262, (1993)Google Scholar
[5] Cuberes, M. T., Schlittler, R. R., and Gimzewski, J. K., J. K., , Appl. Phys. Lett. 69, 3016 (1996)Google Scholar
[6] Binnig, G., Quate, C. F., and Gerber, C., Phys. Rev. Lett. 56, 930 (1986)Google Scholar
[7] Curtis, R., Mitsui, T., and Ganz, E., Rev. Sci. Instr. 68, 2790 (1997)Google Scholar
[8] Lo, W. K. and Spence, J. C. H., Ultramicroscopy 48, 433 (1993)Google Scholar
[9] Wang, Z. L., Poncharal, P., and de Heer, W. A., J. Phys. Chem. Solids 61, 1025 (2000)Google Scholar
[10] Wang, Z. L., Poncharal, P., and de Heer, W. A., W. A. Microsc. Microanal. 6, 224 (2000)Google Scholar
[11] Minor, A. M., Morris, J. W., and Stach, E. A., Appl. Phys. Lett. 79, 16251627 (2001)Google Scholar
[12] Stach, E. A., Freeman, T., Minor, A. M., Owen, D. K., Cumings, J., Wall, M. A., Chraska, T., Hull, R., Morris, J. W., Zettl, A., and Dahmen, U., Microsc. Microanal. 7, 507 (2001)Google Scholar
[13] Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220 (1992)Google Scholar
[14] Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A., Eklund, P. C., and Smalley, R. E., Appl. Phys. A67, 29 (1998)Google Scholar
[15] Cumings, J., Collins, P. G., and Zettl, A., Nature 406, 586 (2000)Google Scholar
[16] Poncharal, P., Wang, Z. L., Ugarte, D., and De Heer, W. A., Science 283, 1513 (1999)Google Scholar
[17] Benedict, L. X., Chopra, N. G., Cohen, M. L., Zettl, A., Louie, S. G., and Crespi, V. H., Chem. Phys. Lett. 286, 490 (1998)Google Scholar
[18] Persson, B. N. J., Surf. Sci. Rep. 33, 83 (1999)Google Scholar
[19] Trimmer, W., Micromechanics and MEMS : classic and seminal papers to 1990 (IEEE Press, New York, 1997)Google Scholar
[20] Carpick, R. W., Ogletree, D. F., and Salmeron, M., Appl. Phys. Lett. 70, 1548 (1997)Google Scholar
[21] Enachescu, M., Van Den Oetelaar, R. J. A., Carpick, R. W., Ogletree, D. F., Flipse, C. F. J., and Salmeron, M., Phys. Rev. Lett. 81, 1877 (1998)Google Scholar
[22] Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., Nature 381, 678 (1996)Google Scholar
[23] Cumings, J. and Zettl, A., Phys. Rev. Lett. 93, 086801 (2004)Google Scholar
[24] Cumings, J., Zettl, A., McCartney, M. R., and Spence, J. C. H., Phys. Rev. Lett. 88, 056804 (2002)Google Scholar
[25] Gabor, D., Nature 161, 777 (1948)Google Scholar
[26] Marton, L., Phys. Rev. 85, 1057 (1952)Google Scholar
[27] Orchowski, A., Rau, W.D., and Lichte, H., Phys. Rev. Lett. 74, 399 (1995).Google Scholar
[28] Cumings, J., Zettl, A., and McCartney, M. R., Microsc. Microanal. 10, 420 (2004)Google Scholar