Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T04:11:48.393Z Has data issue: false hasContentIssue false

Electron Injection-Induced Effects in GaN: Physics and Applications

Published online by Cambridge University Press:  01 February 2011

Leonid Chernyak
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL 32816-2385, U.S.A.
William Burdett
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL 32816-2385, U.S.A.
Get access

Abstract

Electron injection into p-type GaN and related compounds leads to a pronounced increase in the minority carrier lifetime. This increase is manifested in a multiple-fold elongation of the minority carrier diffusion length as is evident from the Electron Beam Induced Current (EBIC) measurements in-situ in a Scanning Electron Microscope. Minority carrier transport enhancement as a result of electron injection is consistent with the changes observed in the material's luminescent properties. Based on the activation energy for the electron injection-induced effects, we ascribe this phenomenon to charging of Mg-acceptor related levels. In addition, we demonstrate an impact of electron injection on responsivity of GaN p-i-n photodetectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chernyak, L., Osinsky, A., Fuflyigin, V., Schubert, E.F., Appl. Phys. Lett. 77, 875 (2000).Google Scholar
2. Chernyak, L., Osinsky, A., Schulte, A., Solid State Electron. 45, 1687 (2001).Google Scholar
3. Chernyak, L., Nootz, G., Osinsky, A., Electron. Lett. 37, 922 (2001).Google Scholar
4. Chernyak, L., Schulte, A., Osinsky, A., Graff, J., Schubert, E.F., Appl. Phys. Lett. 80, 926 (2002).Google Scholar
5. Chernyak, L., Osinsky, A., Temkin, H., Yang, J.W., Chen, Q., Khan, M.A., Appl. Phys. Lett. 69, 2531 (1996).Google Scholar
6. Eckstein, M., Jakubowicz, A., Bode, M., Habermeier, H.-U., Proc. SPIE 1284, 228 (1990).Google Scholar
7. Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Osinsky, A.V., Norris, P.E., Pearton, S.J., Hove, J. Van, Wowchack, A.M., Chow, P.P., J. Appl. Phys. 90, 4032 (2001).Google Scholar
8. Gotz, W., Kern, R.S., Chen, C.H., Liu, H., Steigerwald, D.A., Fletcher, R.M., Mat. Sci. Eng. B59, 211 (1999).Google Scholar
9. Li, J.Z., Lin, J.Y., Jiang, H.X., Salvador, A., Botchkarev, A., Morkoc, H., Appl. Phys. Lett. 69, 1474 (1996).Google Scholar
10. Gelhausen, O., Klein, H.N., Phillips, M.R., Goldys, E.M., Appl. Phys. Lett. 81, 3747 (2002).Google Scholar
11. Pankove, J.I., Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).Google Scholar
12. Sze, S.M., Semiconductor Devices Physics and Technology (Wiley & Sons, New York, 1985) pp. 4950.Google Scholar
13. Johnson, C., Lin, J.Y., Jiang, H.X., Khan, M.A., Sun, C.J., Appl. Phys. Lett. 68, 1808 (1996).Google Scholar
14. Rice, A.K., Malloy, K.J., J. Appl. Phys. 89, 2816 (2001).Google Scholar
15. Chernyak, L., Osinsky, A., Nootz, G., Schulte, A., Jasinski, J., Benamara, M., LilientalWeber, Z., Look, D.C., Molnar, R.J., Appl. Phys. Lett. 77, 2695 (2000).Google Scholar