Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T22:32:23.374Z Has data issue: false hasContentIssue false

Electroluminescence from Single 3D GaN Nanowire Grown by Self-Catalytic Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Chito E. Kendrick
Affiliation:
[email protected], University of Canterbury, Electrical and Computer Engineering, Private Bag 4800, Christchurch, New Zealand, Christchurch, N/A, New Zealand
R. Tilley
Affiliation:
[email protected], Victoria University of Wellington, School of Chemical and Physical Sciences, Wellington, N/A, New Zealand
M. Kobayashi
Affiliation:
[email protected], Waseda University, Kagami Memorial Laboratory, Tokyo, N/A, Japan
R. J. Reeves
Affiliation:
[email protected], University of Canterbury, Department of Physics and Astronomy, Christchurch, N/A, New Zealand
S. M. Durbin
Affiliation:
[email protected], University of Canterbury, Electrical and Computer Engineering, Christchurch, N/A, New Zealand
Get access

Abstract

3-D branching GaN nanowires have been grown using the intermediate and Ga-rich growth regimes of plasma assisted molecular beam epitaxy. Evidence that the growth is due to an auto-catalytic VLS process is obtained through SEM images showing droplet termination heads, the composition of which is essentially pure Ga. TEM analysis revealed a defect free crystal structure, even in the trunk to branch junction. Cathodoluminescence from the trunk of the branching nanowires produced a strong luminescence feature at 3.44 eV, while a slight decrease in energy to 3.1 eV was observed at the interface between the nanowire and epilayer or kink site. No yellow luminescence was detected, further suggesting a defect free growth. Preliminary I-V measurements give mixed results, suggesting intrinsic n-type nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heying, B., Smorchkova, I., Poblenz, C., Elsass, C., Fini, P., Baars, S. Den, Mishra, U., and Speck, J. S., Appl. Phys. Lett., 77, 28852887, (2000).Google Scholar
2. Ptak, A. J., Ziemer, K. S., Millecchia, M. R., Stinespring, C. D., and Myers, T. H., MRS Internet J. Nitride Semicond. Res., 4, G3.10, (1999).Google Scholar
3. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett., 4, 8990, (1964).Google Scholar
4. Pisch, A. and Schmid-Fetzer, R., J. Cryst. Growth, 187, 329332, (1998).Google Scholar
5. Stach, E. A., Pauzauskie, P. J., Kuykendall, T., Goldberger, J., He, R. R., and Yang, P. D. Nano Lett., 3, 867869, (2003).Google Scholar
6. Chen, Y., Campbell, L., and Zhou, W. L., J. Cryst. Growth., 270, 505510, (2004).Google Scholar
7. Dick, K. A., Deppert, K., Martensson, T., Seifert, W., and Samuelson, L., J. Cryst. Growth., 272, 131137, (2004).Google Scholar
8. Kolb, F. M., Berger, A., Hofmeister, H., Pippel, E., Gosele, U., and Zacharias, M., Appl. Phys. Lett., 89, 173111, (2006).Google Scholar
9. Su, J., Cui, G., Gherasimova, M., Tsukamoto, H., Han, J., Ciuparu, D., Lim, S., Pfefferle, L., He, Y., Nurmikko, A. V., Broadbridge, C., and Lehman, A., Appl. Phys. Lett., 86, (2005).Google Scholar
10. Nam, C. Y., Tham, D., and Fischer, J. E., Appl. Phys. Lett., 85, 56765678, (2004).Google Scholar
11. Wu, Z. H., Mei, X., Kim, D., Blumin, M., Ruda, H. E., Liu, J. Q., and Kavanagh, K. L., Appl. Phys. Lett., 83, 33683370, (2003).Google Scholar
12. Hull, K. L., Grebinski, J. W., Kosel, T. H., and Kuno, M., Chem. Mater., 17, 44164425, (2005).Google Scholar
13. Seo, H. W., Bae, S. Y., Park, J., Yang, H. N., Park, K. S., and Kim, S., J. Chem. Phys., 116, 94929499, (2002).Google Scholar