Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:37:28.545Z Has data issue: false hasContentIssue false

Electro-forming of vacancy-doped metal-SrTiO3-metal structures

Published online by Cambridge University Press:  28 June 2011

Florian Hanzig
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, 09596-Freiberg, Germany.
Juliane Seibt
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, 09596-Freiberg, Germany.
Hartmut Stoecker
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, 09596-Freiberg, Germany.
Barbara Abendroth
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, 09596-Freiberg, Germany.
Dirk C. Meyer
Affiliation:
Institute of Experimental Physics, TU Bergakademie Freiberg, 09596-Freiberg, Germany.
Get access

Abstract

Resistance switching in metal – insulator - metal (MIM) structures with transition metal oxides as the insulator material is a promising concept for upcoming non-volatile memories. The electronic properties of transition metal oxides can be tailored in a wide range by doping and external fields. In this study SrTiO3 single crystals are subjected to high temperature vacuum annealing. The vacuum annealing introduces oxygen vacancies, which act as donor centers. MIM stacks are produced by physical vapor deposition of Au and Ti contacts on the front and rear face of the SrTiO3 crystal. The time dependent forming of the MIM stacks under an external voltage is investigated for crystals with varying bulk conductivities. For continued formation, the resistivity increases up to failure of the system where no current can be measured anymore and switching becomes impossible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Souza, R., Fleig, J., Merkle, R., and Maier, J., Zeitschrift fuer Metallkunde 94, 218 (2003)Google Scholar
2. Chan, N. H., Sharma, R. K., and Smyth, D. M., Journal of the Electrochemical Society 128, 1762 (1981)Google Scholar
3. Baiatu, T., Waser, R., and Haerdtl, K. H., Journal of the American Ceramic Society 73, 1663 (1990)Google Scholar
4. Merkle, R., and Maier, J., Angewandte Chemie-International Edition 47, 3874 (2008)Google Scholar
5. Schmalzried, H., and Pelton, A. D., Solid state reactions, 2nd edition, pp. 8185, Verlag Chemie Weinheim (1981)Google Scholar
6. Seibt, J., Abendroth, B., Hanzig, F., Stoecker, H., Strohmeyer, R., Meyer, D. C., Wintz, S., Grobosch, M., Knupfer, M., Himcinschi, C., Muehle, U., Munnik, F., submitted to Journal of Applied Physics (2011)Google Scholar
7. Bobeth, M., Farag, N., Levin, A. A., Meyer, D. C., Pompe, W., and Romanov, A. E., Journal of the Ceramic Society of Japan 114, 1029 (2006)Google Scholar
8. Stoecker, H., Zschornack, M., Seibt, J., Hanzig, F., Wintz, S., Abendroth, B., Kortus, J., and Meyer, D. C., Applied Physics A: Materials Science & Processing 2, 437 (2010)Google Scholar