Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:00:21.847Z Has data issue: false hasContentIssue false

Electrodeposited Magnetic Multilayers

Published online by Cambridge University Press:  10 February 2011

W. Schwarzacher
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.
M. Alper
Affiliation:
Current address:Bursa Uludag Universitesi, Fizik Bölümü, Bursa 16059, Turkey.
R. Hart
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.
G. Nabiyouni
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.
I. Bakonyi
Affiliation:
Research Institute for Solid State Physics, H-1525 Budapest, P.O.B. 49, Hungary.
E. Toth-Kadar
Affiliation:
Research Institute for Solid State Physics, H-1525 Budapest, P.O.B. 49, Hungary.
Get access

Abstract

Electrodeposited magnetic multilayer films consisting of alternating layers of a ferromagnetic and a non-magnetic metal may exhibit giant magnetoresistance (GMR), but the effect is very sensitive to whether deposition is carried out under potentiostatic or galvanostatic control, and the choice of substrate. The texture of Co-Ni-Cu/Cu superlattices grown on polycrystalline (100)-textured Cu plates and (HO)-textured Cu foil under potentiostatic control depended on that of the substrate, while comparable superlattices grown under galvanostatic control had a predominantly (111) texture. The films grown under galvanostatic control generally exhibit AMR or smaller GMR. The magnetic and magnetotransport properties of Co-Ni-Cu/Cu superlattices and a single-layer Co-Ni-Cu film electrodeposited directly onto n-GaAs (100) are also described, and evidence is presented for an in-plane magnetic anisotropy in these samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.) Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
2.) Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
3.) Parkin, S. S. P., Li, Z. G. and Smith, D. J., Appl. Phys. Lett. 58, 2710 (1991).Google Scholar
4.) Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W. P. Jr and Laloee, R., J. Magn. Magn. Mat. 94, LI (1991).Google Scholar
5.) Yahalom, J. and Zadok, O., J. Mater. Sci. 22, 499 (1987);Google Scholar
Yahalom, J. and Zadok, O., U.S. Patent No. 4,652,348 (1987).Google Scholar
6.) Tench, D. M. and White, J. T., Metall. Trans. A 15A, 2039 (1984).Google Scholar
7.) Alper, M., Attenborough, K., Hart, R., Lane, S. J., Lashmore, D. S., Younes, C. and Schwarzacher, W., Appl. Phys. Lett. 63, 2144 (1993).Google Scholar
8.) Bird, K. D. and Schlesinger, M., J. Electrochem. Soc. 142, L65 (1995).Google Scholar
9.) Lenczowski, S. K. J., Schonenberger, C., Gijs, M. A. M., and de Jonge, W. J. M., J. Magn. Magn. Mat. 148, 455 (1995).Google Scholar
10.) Lashmore, D. S., Zhang, Y., Hua, S., Dariel, M. P., Swartzendruber, L. and Salamanca-Riba, L., Proceedings of 3rd International Symposium on Magnetic Materials, Processes and Devices, Electrochem. Soc. Proc. Vol. 94–6, 205 (1994).Google Scholar
11.) Attenborough, K., Hart, R., Lane, S. J., Alper, M. and Schwarzacher, W., J. Magn. Magn. Mat. 148, 335 (1995).Google Scholar
12.) Ueda, Y. and Ito, M., Jpn. J. Appl. Phys. Part 2 33, L1403 (1994).Google Scholar
13.) Blythe, H. J. and Fedosyuk, V. M., J. Phys. Condens. Matt. 7, 3461 (1995).Google Scholar
14.) Piraux, L., George, J. M., Despres, J. F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K. and Fert, A., Appl. Phys. Lett. 65, 2484 (1994).Google Scholar
15.) Blondel, A., Meier, J. P., Doudin, B. and Ansermet, J.-Ph., Appl. Phys. Lett. 65, 3019 (1994).Google Scholar
16.) Schwarzacher, W. and Lashmore, D. S., IEEE Trans. Magnet. 32, 3133 (1996).Google Scholar
17.) Alper, M., PhD thesis, University of Bristol, 1995;Google Scholar
Alper, M., Lane, S. J. and Schwarzacher, W. (submitted to J. Electrochem. Soc).Google Scholar
18.) McGuire, T. R. and Potter, R. I., IEEE Trans. Magnet. MAG- 11, 1018 (1975).Google Scholar
19.) Nabiyouni, G., Schwarzacher, W., Bakonyi, I. and Tóth-Kádár, E. (unpublished).Google Scholar
20.) Cziráki, A., Nabiyouni, G., Schwarzacher, W., Zheng, J. G., Michel, A., Tóth-Kádárand, E., Bakonyi, I. (unpublished).Google Scholar
21.) Hart, R., PhD thesis, University of Bristol 1996;Google Scholar
Hart, R., Alper, M., Attenborough, K. and Schwarzacher, W., Proceedings of 3rd International Symposium on Magnetic Materials, Processes and Devices, Electrochem. Soc. Proc. Vol. 94–6, 215 (1994).Google Scholar