Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:37:21.118Z Has data issue: false hasContentIssue false

Electrochemical Sensing Properties of Ultra Long Aligned Multi-Walled Carbon Nanotube Microelectrodes

Published online by Cambridge University Press:  01 February 2011

Niramol Punbusayakul
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Material Science and Engineering, 110 8th St., Troy, NY, 12180, United States, 518-2766541, 518-2766540
Lijie Ci
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Material Science and Engineering, 110 8th St., Troy, NY, 12180, United States
Saikat Talapatra
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Material Science and Engineering, 110 8th St., Troy, NY, 12180, United States
Werasak Surareungchai
Affiliation:
[email protected], King Mongkut¡¯s University of Technology Thonburi, School of Bioresources and Technology, 83 Moo 8, Bangkhuntien-Chaitalay Rd, Thakam, Bangkok, 10150, Thailand
Pulickel M. Ajayan
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Material Science and Engineering, 110 8th St., Troy, NY, 12180, United States
Get access

Abstract

We report on the electrochemical properties of ultra long aligned multiwalled carbon nanotube (MWNT) bundles synthesized using water-assisted chemical vapor deposition process. Cyclic voltammogram with diffusion-controlled-reversible reaction obtained at MWNT electrodes in 10 mM K3(Fe(CN)6) /0.1 M KCl solution with varying scan rates indicates that radial diffusion mass transport is dominant at these electrodes. We further show that these electrodes can detect very low concentrations of ascorbic acid (AA) and dopamine (DA) (0.7 μM for AA and 1.87 μM for DA ). The excellent electrochemical properties along with nice performance for single species detection suggest that these MWNTs are promising electrode materials for developing high sensitive chemical and/or biological sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodling, J.J., Electrochim. Acta 50, 3049 (2005)Google Scholar
2. Merkoci, A., Pumera, M., Llopis, X., Perez, B., Valle, M. del and Alegret, S., Trends in Anal.Chem. 24, 826 (2005)Google Scholar
3. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.De, Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M., Science 284, 1340(1999)Google Scholar
4. Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemay, S.G. and Dekker, C., Nano Lett. 5, 137(2005)Google Scholar
5. Nugent, J.M., Santhanam, K.S.V., Rubio, A. and Ajayan, P.M., Nano Lett. 1, 87(2001)Google Scholar
6. Pumera, M., Merkoci, A. and Alegret, S., Sens. & Actuators B 113, 617(2006)Google Scholar
7. Punbusayakul, N., Talapatra, S., Ci, L., Surareungchai, W. and Ajayan, P.M., Meet. Abstr.-Electrochem. Soc. 601, 673 (2006)Google Scholar
8. Yun, Y., Shanov, V., Tu, Y., Schulz, M.J., Yarmolenko, S., Neralla, S., Sankar, J. and Subramaniam, S, Nano Lett. 6, 689(2006)Google Scholar
9. Zheng, L.X., O'Connell, M.J., Doorn, S.K., Liao, X.Z., Zhao, Y.H., Akhadov, E.A., Hoffbauer, M.A., Roop, B.J., Jia, Q.X., Dye, R.C., Peterson, D.E., Huang, S.M., Liu, J. and Zhu, Y.T., Nature Materials 3, 673(2004)Google Scholar
10. Lam, H., Titchenal, N., Naguib, N., Ye, H., Gogotsi, Y. and Ko, F., Mat. Res. Soc. Symp. Proc. 791, Q1051(2004)Google Scholar
11. Yun, Y., Shanov, V., Schulz, M.J., Dong, Z., Jazieh, A., Heineman, W.R., Halsall, H.B., Wong, D.K.Y., Bange, A., Tu, Y. and Subramaniam, S., Sens. & Actuators B DOI:10.1016/j.snb.2006.02.030 (2006)Google Scholar
12. Hu, C., Zhang, Y., Bao, G., Zhang, Y., Liu, M. and Wang, Z.L., Chem. Phys. Lett. 418, 520(2005)Google Scholar
13. Li, J., Cassell, A., Delzeit, L., Han, J. and Meyyappan, M., J. Phys. Chem. B 106, 9299 (2002)Google Scholar
14. Chakrapani, N., Wei, B., Carrillo, A. and Ajayan, P.M., Kane, R.S., PNAS 101, 4009(2004)Google Scholar
15. Whitten, P.G., Spinks, G.M., and Wallace, G.G., Carbon 43, 1891(2005)Google Scholar
16. Wantz, F., Banks, C.E. and Compton, R.G., Electroanal. 17, 1529(2005)Google Scholar
17. Ren, W., Luo, H.Q. and Li, N.B., Biosens. Bioelectron. 21, 1086(2006)Google Scholar
18. Fei, J., Sun, Y., Hu, S. and Gao, Z., Nanotech. 3, 260(2004)Google Scholar
19. Jiang, L., Liu, C., Jiang, L., Peng, Z. and Lu, G., Anal. Sci. 20, 1055(2004)Google Scholar
20. Pournaghi-Azar, M.H., Razmi-Nerbin, H. and Hofezi, B., Electroanal. 14, 206(2002)Google Scholar
21. Ly, S.Y., Bioelectrochemistry 68, 227(2006)Google Scholar
22. Wang, H.-S., Li, T.-H., Jia, W.-L. and Xu, H.-Y., Biosens. Bioelectron doi:10.1016/j.bios. 2006.02.007(2006)Google Scholar