Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:05:48.353Z Has data issue: false hasContentIssue false

Electrochemical Properties of Blockcopolymer Templated Mesoporous Silicates with Heteropolyacids clusters

Published online by Cambridge University Press:  11 February 2011

Hui Suk Yun
Affiliation:
Dept. of Materials Science, University of Tokyo, Bunkyo-ku, Tokyo 113–8656, Japan
Makoto Kuwabara
Affiliation:
Dept. of Materials Science, University of Tokyo, Bunkyo-ku, Tokyo 113–8656, Japan
Hao Shen Zhou
Affiliation:
National Institute of Advanced Industrial Science and technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki, 305–8568, Japan, E-mail: [email protected]
Itaru Honma
Affiliation:
National Institute of Advanced Industrial Science and technology (AIST), 1–1–1 Umezono, Tsukuba, Ibaraki, 305–8568, Japan, E-mail: [email protected]
Get access

Abstract

In this paper, we have studied a method of loading 12-tungstophosphoric acid (H3PW12O40; PWA) into blockcopolymer templated (designated EO20PO70EO20; Pluronic P-123) mesoporous SiO2 framework without a disordering of mesostructure and without remarkable decrease of specific surface area through one-step condensation process. A precursor solution is initially prepared by TEOS (tetraethoxysilane) hydrolyzed with templating polymer (eg. triblock copolymer), and then mixed directly with PWA to condense mesoporous silicate products that incorporate PWA clusters in the framework. Heteropolyanions are possibly incorporated in the framework silicates. Electrochemical properties of these PWA impregnated mesoporous silicates were studied as electrode materials of Li ion battery as well as solid proton conductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C. T., Leonowics, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, 710 (1992)Google Scholar
2. Antonelli, D. M., Ying, J. Y., Chem. Mater., 1996, 8, 874,Google Scholar
Tian, Z.. Tong, W., Wang, J., Duan, N., Krishnan, V. V. and Suib, S. L., Science 276, 926 (1997),Google Scholar
Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. and Stucky, G. D., Nature 396, 152 (1998),Google Scholar
Yun, H. S., Miyazawa, K., Zhou, H. S., Honma, I. and Kuwabara, M., Adv. Mater. 13, 1377 (2001)Google Scholar
3. Honma, I., Takeda, Y. and Bae, J. M., Solid State Ionics 120, 255 (1999),Google Scholar
Honma, I., Nomura, S. and Nakajima, H., J. Membrane. Sci. 185, 83 (2001)Google Scholar
4. Marosi, L., Platero, E. E., Cifre, J. and Arean, C. O., J. Mater. Chem. 10, 1949 (2000),Google Scholar
5. Kaleta, W. and Nowinska, K., Chem. Comm. 535 (2001)Google Scholar
6. Brégeault, J. M., Piquemal, J. Y., Briot, E., Duprey, E., Launay, F., Salles, L., Vennat, M. and Legrand, A. P., Micropor. Mesopor. Mater. 44–45, 409 (2001)Google Scholar
7. Li, W., Li, L., Wang, Z., Cui, A., Sun, C. and Zhao, J., Mater. Lett. 49, 228 (2001)Google Scholar
8. Siahkali, A. G., Philippou, A., Dwyer, J. and Anderwon, M. W., Appl. Catal. A 192, 57 (2000)Google Scholar
9. Verhoef, M. J., Kooyman, P. J., Peters, J. A. and Bekkum, H. V., Micropor. Mesopor. Mater. 27, 365 (1999)Google Scholar
10. Jalil, P. A., Daous, M. A. A., Arfaj, A. R. A. A., Amer, A. M. A., Beltramini, J. and Barri, S. A. I., Appl. Catal. A 207, 159 (2001)Google Scholar
11. Tatsumisago, M., Honjo, H., Sakai, Y. and Minami, T., Solid State Ionics, 74, 105 (1994)Google Scholar