Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:24:52.319Z Has data issue: false hasContentIssue false

Electrochemical Preparation of Silver Selenide Films and Nanowires from Aqueous Solutions

Published online by Cambridge University Press:  01 February 2011

Ruizhi Chen
Affiliation:
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Physical Chemistry, Peking University, Beijing 100871, P. R. China
Dongsheng Xu
Affiliation:
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Physical Chemistry, Peking University, Beijing 100871, P. R. China
Weilie Zhou
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Le Duc Tung
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Leonard Spinu
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148
Guolin Guo
Affiliation:
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Physical Chemistry, Peking University, Beijing 100871, P. R. China
Get access

Abstract

Both thin films and nanowires of silver selenide were synthesized by electrodeposition from an aqueous acid electrolyte containing silver ion complexed with SCN- and selenium dioxide at room temperature. Orthorhombic Ag2Se films with Ag slightly in excess were obtained. After annealing in argon atmosphere, the films are highly (002) oriented. A positive transverse magnetoresistance of about 20–25% at T = 5 K, and 10–13% at T = 300 K, in fields of H=50 kOe were observed in the electrodeposited films. Furthermore, silver selenide nanowires were synthesized from the same aqueous system by electrodeposition in porous anodic alumina templates. X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Energy dispersive absorption X-ray (EDAX) characterization results showed that the nanowires are highly crystalline with (002) growth direction after annealing. In addition, the atomic ratio of Ag/Se in the films and the nanowire samples can be controlled from about 3.0 to 2.1 by adjusting the concentration of AgI and SeIV source and the deposition potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dalven, R. and Gill, R., Phys. Rev. 159, 645 (1967).Google Scholar
2. Junod, P., Helv. Phys. Acta 32, 567 (1958).Google Scholar
3. Ogorelec, Z., Hamzic, A., Basletic, M., Europhys. Lett. 46, 56 (1999).Google Scholar
4. Manoharan, S. S., Prasanna, S. J., Kiwitz, D. E. and Schneider, C. M., Phys. Rev. B 63, 212405 (2001).Google Scholar
5. Chuprakov, I. S., Dahmen, K. H., Appl. Phys. Lett. 72, 2165 (1998).Google Scholar
6. Schnyders, H. S., Saboungi, M. L., Rosenbaum, T. F., Appl. Phys. Lett. 76, 1710 (2000).Google Scholar
7. Xu, R., Husmann, A., Rosenbaum, T. F. and Saboungi, M. L., Nature 390, 57 (1997).Google Scholar
8. Damodara Das, V. and Karunakaran, D., J. Appl. Phys. 68, 2105 (1990).Google Scholar
9. Sharma, R. P., Indian J. Pure Appl. Phys. 35, 424 (1997).Google Scholar
10. Sáfrán, G., Malicskó, L., Geszti, O. and Radnóczi, G., J. Cryst. Growth 205, 153 (1999).Google Scholar
11. Sharma, K. C., Sharma, R. P. and Garg, J. C., India J. Pure Appl. Phys. 28, 546 (1990).Google Scholar
12. Pejova, Biljana, Najdoski, Metodija, Ivan, G., Dey, Sandwip K., Mater. Lett. 43, 269 (2000).Google Scholar
13. Lokhande, C. D. and Pawar, S. H., Phys. Stat. Sol. (a) 111, 17 (1989).Google Scholar
14. Routkevitch, D., Tader, A. A., Haruyama, J., Almawlawi, D., Mokovits, M., and Xu, J. M., IEEE Trans. Electron Devices 43, 1646 (1996).Google Scholar
15. Hulteen, J. C., and Martin, C. R., J. Mater. Chem. 7, 1075 (1997).Google Scholar
16. Pacauskas, E., Janickis, J., Lasaviciene, I., Liet. TSR Mokslu Akad. Darb. Ser. B, 2, 61 (1971).Google Scholar
17. David, M., Modolo, R., Traore, M., Vittori, O., Electrochim. Acta 31, 851 (1986).Google Scholar
18. Neshkova, M. T., Nikolova, V. D., Petrov, V., J. Electroanal. Chem. 487, 100 (2000).Google Scholar
19. Chen, R. Z., Xu, D. S., Guo, G. L., and Tang, Y. Q., J. Mater. Chem. 12, 1437 (2002).Google Scholar
20. Xu, D. S., Xu, Y. J., Chen, D. P., Guo, G. L., Gui, L. L. and Tang, Y. Q., Adv. Mater. 12, 520 (2000).Google Scholar
21. Mebra, M. C. and Gubeli, A. O., Can. J. Chem. 84, 3491 (1970).Google Scholar
22. Kazacos, M. S. and Miller, B., J. Electrochem. Soc. 127, 869 (1980).Google Scholar
23. Liu, K., Chien, C. L. and Searson, P. C., Phys. Rev. B 58, R14681 (1998).Google Scholar