Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T00:03:20.948Z Has data issue: false hasContentIssue false

Electrochemical performance of anodized TiO2 Nanotubes for rechargeable Lithium Batteries

Published online by Cambridge University Press:  30 August 2011

R. Prasada Rao*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
L. Kangle
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
S. Adams
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
M.V. Reddy
Affiliation:
Department of Physics, National University of Singapore, Singapore, 119260, Singapore
B.V.R. Chowdari
Affiliation:
Department of Physics, National University of Singapore, Singapore, 119260, Singapore
Get access

Abstract

The electrochemical storage performance of anatase TiO2 nanotubes (NT) is compared to the performance of TiO2 nanotubes covered by sulfur. Charge/discharge curves and cycling performance of TiO2 NT with and without sulfur deposition with respect to lithium anodes are demonstrated in electrochemical test cells. At 0.5C cycle rate the TiO2 NT exhibited a first cycle specific charge/discharge capacity of 180/155 mAh/g, whereas the TiO2 NT deposited with sulfur showed a remarkably higher performance at 0.5C cycle rate with first cycle charge/ discharge specific capacities of 258/260 mAh/g and a coulombic efficiency of 98%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., Adv. Mater. 10, 725(1998).Google Scholar
2. Tarascon, J. M., Armand, M., Nature 414, 359(2001).Google Scholar
3. Bruce, P.G., Scrosati, B., Tarascon, J.M., Angew. Chem., Int. Ed. 47, 2930(2008).Google Scholar
4. Armstrong, G., Armstrong, A.R., Bruce, P.G., Reale, P., Scrosati, B., Adv. Mater. 18, 2597 (2006).Google Scholar
5. Guyomard, D., Tarascon, J.M., J. Electrochem. Soc. 139, 937(1992).Google Scholar
6. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., J. Electrochem. Soc. 144 2581(1997).Google Scholar
7. Alcántara, R., Jaraba, M., Lavela, P., Tirado, J.L., Electrochim. Acta 47, 1829(2002).Google Scholar
8. Strobel, P., Tillier, J., Diaz, A., Ibarra-Palos, A., Thiery, F., Soupart, J.B., J. Power Sources 174, 910(2007).Google Scholar
9. Reale, P., Panero, S., Scrosati, B., Garche, J., Wohlfahrt-Mehrens, M., Wachtler, M., J. Electrochem. Soc. 151, A2138(2004).Google Scholar
10. Buhrmester, C., Moshurczak, L., Wang, R.C.L., Dahn, J.R., J. Electrochem. Soc. 153, A288 (2006).Google Scholar
11. Zwilling, V., Aucouturier, M., Darque-Ceretti, E., Electrochim. Acta 45, 921(1999).Google Scholar
12. Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., Schmuki, P., Nano Lett. 7, 1286(2007).Google Scholar
13. Tian, M., Wu, G.S., Adams, B., Wen, J.L., Chen, A.C., J. Phys. Chem. C 112, 825(2007).Google Scholar
14. Ortiz, G. F., Hanzu, I., Knauth, P., Lavel, P., Tirado, J. L., Djeniziana, T., Electrochimica Acta 54, 4262(2009).Google Scholar
15. Reddy, M.V., Jose, R., Teng, T. H., Chowdari, B. V. R., S. Ramakrishna Electrochimica Acta 55, 3109(2010).Google Scholar
16. Kelly, J.J., Electrochim. Acta 24, 1273(1979).Google Scholar
17. Macklin, W.J., Neat, R.J., Solid State Ionics 53, 694(1992).Google Scholar
18. Lindsay, M.J., Blackford, M.G., Attard, D.J., Luca, V., Skyllas-Kazacos, M., Griffith, C.S., Electrochim. Acta 52, 6401(2007).Google Scholar
19. Xie, Z.B., Adams, S., Blackwood, D.J., Wang, J., Nanotechnology, 19, 405701(2008).Google Scholar
20. Kangle, L., Xie, Z.B., Adams, S., Zeitschrift für Kristallographie 225, 173(2010).Google Scholar
21. Zhu, K., Vinzant, T.B., Neale, N.R., Frank, A.J.,, Nano Letters, 7(12), 3739(2007).Google Scholar
22. Larson, A.C., Von Dreele, R.B., Los Alamos National Laboratory Report LAUR 86748, (1994).Google Scholar
23. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Solar Energy Materials and Solar Cells 90(14), 2011(2006).Google Scholar