Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:41:36.075Z Has data issue: false hasContentIssue false

Electrochemical Fabrication of the Nano-Wire Arrays: Template, Materials And Applications

Published online by Cambridge University Press:  10 February 2011

Dmitri Routkevitch
Affiliation:
Department of Chemistry and University of Toronto, Toronto, Ontario, Canada [email protected]
Jimmy Chan
Affiliation:
Department of Chemistry and University of Toronto, Toronto, Ontario, Canada
Dmitri Davydov
Affiliation:
Department of Chemistry and University of Toronto, Toronto, Ontario, Canada
Ivan Avrutsky
Affiliation:
Department of Electrical Engineering, University of Toronto, Toronto, Ontario, Canada
J. M. Xu
Affiliation:
Department of Electrical Engineering, University of Toronto, Toronto, Ontario, Canada
M. J. Yacaman
Affiliation:
Univ. Naci. Autonoma Mexico, Inst. Fis., Mexico City, Mexico
Martin Moskovits
Affiliation:
Department of Chemistry and University of Toronto, Toronto, Ontario, Canada
Get access

Abstract

Anodic aluminum oxide (AAO) may be used as a template for electrochemically fabricating metal and semiconductor nano-wires. We assess the seminal factors involved in each step in this fabrication process with an aim at producing device-quality semiconductor nano-arrays. This includes an analysis of the electrochemical factors, the structural effects resulting from the templating, the crystallinity of the nano-wires, their anisotropy and their suitability for device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wernick, S., Pinner, R., Sheasby, P. G., The Surface Treatment and Finishing of Aluminum and its Alloys, Finishing Pubi.: Teddington, 1987; vol. 1.Google Scholar
2. (a) Kawai, S., in Proc. Symp. Electroch. Techn. Electronics, edited by Romankiw, L. T., and Osaka, T., Electroch. Soc, Pennington, NJ, PV 88–23, 389 (1987);Google Scholar
(b) AlMawlawi, D., Coombs, N., Moskovits, M., J. Appl. Phys., 70, 4421 (1991);Google Scholar
(c) Dunlop, D. J., Xu, S., Ordemir, O., AlMawlawi, D., Moskovits, M., Phys. Earth Planet. Inter., 76, 113(1993).Google Scholar
3. (a) Martin, C. R., Science, 266, 1961 (1994);Google Scholar
(b) Whitney, T. M., Jiang, J. S., Searson, P. C., Chien, C. L., Science, 261, 1316 (1993).Google Scholar
4. Ozin, G., Adv. Mater., 4, 612648 (1992)Google Scholar
5. Klein, J.D., Herrik, R.D. II, Palmer, D., Sailor, M., Brumlik, C.J., and Martin, C., Chem. Mater., 5, 902904 (1993).Google Scholar
6. Routkevitch, D., Bigioni, T., Moskovits, M., and Xu, J. M., J. Phys. Chem., 100, 1403714047 (1996).Google Scholar
7. Doudin, B., Blondel, A., Ansermet, J.-Ph., J. Appl. Phys., 79(8), 60906094 (1996).Google Scholar
8. Menon, V.P., Martin, C.R., Anal. Chem., 67, 19201928 (1995).Google Scholar
9. Nishizawa, M., Menon, V.P., Martin, C.R., Science, 268, 700702 (1995).Google Scholar
10. Masuda, H., Fukuda, K., Science, 268, 14661468 (1995)Google Scholar
11. Wattman technical support (private communication)Google Scholar
12 Menon, V. P., Martin, C. R., Anal. Chem. 1995, 67, 1920.Google Scholar
13 Chlebny, I., Doudin, B., Ansermet, J.-Ph., Nanostr. Mater., 2, 637 (1993).Google Scholar
14 see, for example, an overview in Randon, J., Mardilovich, P. P., Goviadinov, A. N., and Paterson, R., J. Coll. Sci. Techn., 169, 335341 (1995).Google Scholar
15 Ebihara, K., Takahashi, H., Nagayama, M., J. Met. Finish. Soc. Jap., 34, 548553 (1983)Google Scholar
16 Debuyck, F., Moors, M., Van Peteghem, A. P., Mater. Chem. Phys., 36, 146149 (1993).Google Scholar
17 Routkevitch, D., Chan, J., Xu, J. M. and Moskovits, M., in preparation.Google Scholar
18 Routkevitch, D., Moskovits, M., unpublished recent result.Google Scholar
19 Parkhutic, V. P., Shershulsky, V. I., J. Phys. D: Appl. Phys., 25, 12581263 (1992).Google Scholar
20 Mardilovich, modelling paper with regular structureGoogle Scholar
21 Routkevitch, D., Haslett, T. L., Ryan, L., Bigioni, T., Doiketis, C., and Moskovits, M., Chem. Phys., 210, 343352 (1996).Google Scholar
22 Shiang, J.J., Risbud, S. H., and Alivisatos, A. P., J. Chem. Phys., 98, 8432 (1993).Google Scholar
23 (a) Routkevich, D., Tager, A., Haruyama, J., Al-Mawlawi, D., Moskovits, M. and Xu, J. M., IEEE Trans. Electron Dev., 43(10), 16461658 (1996),Google Scholar
(b) Tager, A., Routkevich, D., Haruyama, J., Al-Mawlawi, D., Ryan, L., Moskovits, M. and Xu, J. M., Future Trends in Microelectronics: Reflection on the Road to Nanotechnology, edited by Luryi, S., Xu, J.M., and Zaslavsky, A. (Proc. NATO Adv. Res. Worksh.) NATO ASI Ser. E, Vol. 323, Kluwer Acad. Pubi., Dordrecht, 1996, pp. 171185.Google Scholar
24 Mardilovich, P.P., Govyadinov, A.N., Mazurenko, N.I., Paterson, R., J. Membr. Sci., 98(1–2), 143155(1995).Google Scholar
25 (a) Routkevitch, D., Moskovits, M., unpublished recent results; (b) reference 24.Google Scholar
26 Surganov, V., IEEE Trans. Comp. Pack. Manuf. Techn., B, 17(2), 197200 (1994).Google Scholar
27 Routkevitch, D., Davydov, D., Chan, J., Moskovits, M., in preparation.Google Scholar